HENT NND SCHEUUL M TOR UNITED 172
CTATES AIB FORCE T (U> AIR FORCE INST OF TECH
WRIGHT-PRATTERSON AFB OH N T NATTHEWS JUN 87

UNCLASSIFIED AFIT/CI/NR-87-85T F/6 5/9

HEEENN
HEEEENEN
N -
11 B
1k
B
]
HEEENNN
NN
HENERNN
HENENNN
HERENNN
N -
.

SNBSS ™
-

1.25

t‘_ r“,
MICROCOPY RESOLUTION TEST a«a& =

ATIONAL BUREAU OF STAMUARDS- 19634 ‘._
4 ! . N
/—\
/// \
o

|

A TRAINING MANAGEMENT AND SCHEDULING SYSTEM

FOR UNITED STATES AIR FORCE TACTICAL FIGHTER SQUADRONS

o i B sadmae ftube o A ¢ g

Accession Ior

FTIS GRAXI #
DTIC TAB O
UnannounceA 0

Jusiifion O

s s« .- g i a e

h3/ A

Dezimi oy

ave ‘y Cui-3
ardfor

T r———

/}‘ ;

Mark T. Matthews, Captain, United States Air Force

DTIC

ELECTE

NOV O 4 1987

D

A THESIS PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE OF
MASTER OF SCIENCE IN ENGINEERING

RECOMMENDED FOR ACCEPTANCE BY

THE DEPARTMENT OF CIVIL ENGINEERING

JUNE 1987

DISTRIBUTICN STATZMENT A |

Approved for public relousal
Distribution Unlimited

Q0 IS¥

UNCLASSLEF LED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

N A TRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLEFING FORM
° T. REPOAT NUMBER 2. GOVT ACCESSION NO] 3. RECIPIENT’'S CATALOG NUMBER
-g0 ”
, AFIT/C1/NR 87-827 NA157 34
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Training Management And Scheduling System For
United States Air Force Tactical Fighter Squadro THESLS/BLESLRIKTION

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mark T. Matthews

4

9. PERFORMING ORGANIZATION NAME AND ADDRESS
AFIT STUDENT AT:

Princeton University

. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OF FICE NAME ANO ADDRESS , 12. REPORT DATE
AFIT/NR 1987
WPAFB OH 45433-6583 13. NUMBER OF PAGES

78 +

14. MONITORING AGENCY NAME & ADDRESS(I! different Irom Controlling Office) 18. SECURITY CLASS. (of this report)

UNCLASSIFIED
T5a, DECL ASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I different from Report)

e

- —

18. SUPPLEMENTARY NOTES N)
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 . WOLAVER }JW’)
Dé4n for Research and
Professional Development
AFIT/NR

19. XEY WORODS (Continue on reverse side Il necessery and identlly by biock number)

20. ABSTRACT (Continue on reverse side Il necessary and identity by block number)
ATTACHED

A

DD ':2:'!’, 1473 coimion oF 1 NOV 6813 ORSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| s |

ABSTRACT

"> Crewmembers in United States Air Force Tactical Fighter Squadrons (TFS) accomplish
complex combination of flying and ground training to meet peacetime and wartime contingency
tasking. Manual scheduling systems used today often result in crewmembers not accomplishing
required training or receiving training in an inefficient manner. Flying $20 million supersonic
aircraft the consequences can be expensive and fatal. The scheduling problem facing the TFS can
be shown to be NP hard. A heuristic is presented which offers a solution to this scheduling prob-
lem. A series of transportation subproblems are solved using a primal network simplex code. At
each stage, solutions are linked with previous solutions until a schedule is formed or no feasible
solution can be found for the remaining jobs. A swap routine then attempts to find a feasible solu-
tion if one does not currently exist. The algorithm then continues into an improvement routine in
an attempt to find a solution with an increased objective value. This approach was chosen due to
a desire to develop a system fast enough to be intéractive on a daily basis yet self contained at the

-squadron level. The results seem promising in providing a typical USAF TFS with training

results superior to those accomplished currently . \

\

ACKNOWLEDGEMENTS

I wish to thank the many individuals who made this work possible.

My advisor, Professor John Mulvey, was my first contact with Princeton. His early gui-
dance led to the selection of this area of research. His patience with an Air Force fighter pilot 8
years stale of the academic environment allowed me the chance to learn. Yet his suggestions were
precise enough that I did not waste unwarranted time fighting windmills in the ultimate attain-
ment of what will hopefully develop into a practical tool for improved Tactical Fighter Squadron
training.

Others also helped. Professor Warren Powell developed the primal network simplex code
incorporated in this thesis. He also provided immeasurable guidance in the area of heuristic
improvement procedures. Professor Michael Schneider was always available to provide help and
advice in the C programming language. In addition, Hercules Vladimirou provided enormous
assistance in the UNIX operating system and in modifications of the ZOOM/XMP code for incor-
poration in this study. Though the coding incorporated here is still somewhat crude , as my first
major programming effort ever, I doubt I could have accomplished it without their assistance. I
would also like to thank Professor Alain Kornhauser who, along with Professor Mulvey and Pro-

fessor Powell, served on my thesis presentation committee.

This study seeks to aid real world members of a Tactical Fighter Squadron in accomplishing
their training. One of these F-15 pilots, Captain Greg Feest of the 27 Tactical Fighter Squadron,
took time from an intense schedule to help me in developing the guidelines of what just such a
system should accomplish. Without his assistance and that of many others in the 1 Tactical
Fighter Wing this study would lack the necessary detail that makes its adoption on a squadron

level a real possibility.

Finally, I wish to thank my wife Donna and my son Zak for being there when I needed
them. 1 wish to apologize to them for the times I was not there when they needed me. One can
only hope that sacrifices are justified in the benefits they bring to othess.

i1

CONTENTS

Page No
ABSTRACT ... it s toosecssssscsnssncssasessssscscnssas i
ACKNOWLEDGEMENTS - - « + + e v v vevonnnnnassoonnannnsssos i
CONTENTS. « + o v v e v v vvnesassooeanssseasssosnenennnns iv
LISTOFFIGURESANDTABLEScccoteeceeccccrcnccne vi
INTRODUCTION. « « « v e v evvnvenenesacnnnnsnssesanens ceee
CHAPTER 1
THE TFS SCHEDULING PROBLEM AND RESEARCH OBJECI'IVES 4
1.JThe TRSMIiSSion « « « c e e v e o s careascncsascescoss teeecs e 4
12Duties « + +cccccoeo oo s esevseeesssseantaeseetse s 4
lsmpcﬁves ... 8
CHAPTER 2
MODELFORMULATION . . . et totvneveconsrontsensanconsnas 10
2.1 TheDailySchedule.ovurececncnnnesns Ceteneea 10
2.2 Handling Infeasibilities e eeeeieeenareeeeean 2
221 FlliNAEXES « » » o s v oo v o vossnaeronoasssoarsoseresanes 20
222 Natural StruCture « <« + - ¢ v s oo e s oo oo teee eoeeseeans P) |
223 SWEPPING. « « ¢ v e vttt e ettt 24
2.3 Increasing the Time Horizons Cheeseaes Ceseseaes 33
23 1TrncstOnEMectS . .. oo oo ervvreeeeroenncnonneoonas 33
2.4 Incorporating Additional Constraints ccveccvenenn. R
24.1Pairings. covienenn, Ceeeeeeseaees veeae R
242]_engthof TourConstraints « + « + « s e e o v e oo vtocevenosnssecss 37
2.43General Constraints: - « - = - <« ccosovoeenns et ecenase e 38
2.5 Improving the Solution - An Interactive System 38
CHAPTER 3
RESULTS .. .oovennvvnnnnnenns e cereree.. B2
3.1 The Network Simplex AIGOTithm - 0o oo vnvnsnennnnnnnns 42
F2Results - ¢ ¢ - s st i i B S 4
33CoDCIuSioNS « » » + oo Ceettsresessensensann eos 32
CHAPTER 4
INCORPORATING GOALS ANDLONG RANGEUSES,,.. AU &
4uneorponﬁngoom-ndungnmpUm.,................... 35
4.1)8ettingPrices - -+« et trras e et 57
4.2 Determining Sortie TYpes e U
43Creating JODTYPES .« ovvieneererereenennonnnnnnee,, 62
4.4 Other Uses for the Long Range Scheduler veresae.. 63
4,5mcﬁv¢A3pm veseaon 64
46SchedulingSystemandUsescoo00tevvevennnns 68

SUMMARY ANDCONCLUSIONS.cciveetene Ceer e eann
REFERENCES: « + + v« v et eeonetoeanssasenennsasns cees

APPENDIX A: TYPICAL TFS GOALS ++ « < v vvevvnnnnen e

APPENDIX B: SCHEDULING CHECKLIST - = + -+ + » « e
APPENDIXC: TACMS1-SOEXCERPTS . .« c s cccvvvovsareaorens
APPENDIX D: LETTER OF X'S + -+« Sevesesentonses cevene
APPENDIXE:SCHEDULINGSHELL : ¢ ¢+ ¢« s v v et v veveoesrsoss oo
APPENDIX F: PASCODE e, e

—— e

Table 1.1
Table 1.2

Table 1.3

Figure 2.1
Figure 2.2
Figure 2.3.1
Figure 2.3.2
Figure 2.3.3
Figure 2.4
Figure 2.5.1
Figure 2.5.2
Figure 2.5.3
Figure 2.54
Figure 2.5.5
Figure 2.6
Figure 2.7
Figure 2.8

LIST OF FIGURES AND TABLES

CHAPTER 1

TFS Scheduling Requirements
Ground Training

Other Scheduled Events

CHAPTER 2

Task type/Task time Two-tuple Job Representation
Bipartite Transportation Network

An Initial Solution to a Scheduling Problem

New Network Structure Following Initial Assignments
Final Solution

Network Structure of the Problem

Job Start and Stop Times

Initial Solution

First Swap Assignments

Swap Based on Bij

Swap With a Simplex Iteration

Daily Scheduler Flow Chart

Tradeoffs Between Pairing Pilots and Currencies

Appended Flow Chart for Algorithm C

vi

Page No.

10
11
14
15
16

19

27

29

32

39

Figure 3.1
Figure 3.2
Table 3.1
Table 3.2

Table 3.3

Figure 4.1

CHAPTER 3

Initial Solution Using the Big M Method
A Network Simplex Pivot

Test Problem Structure

Computational Data

Breakdown of Execution Times

CHAPTER 4

Long Range Sortie Projection

vii

42

S

&

S0

54

60

. S S S S S i S —

INTRODUCTION

A typical United States Air Force Tactical Fighter Squadron (TFS) has 40-80 crewmembers
and 26 aircraft. In addition to conducting daily training missions, crewmembers must undergo
intensive ground training to prepare for the multi-faceted threat which they may face and to main-
tain their competency of the systems on board what are increasingly complex aircraft. These
tasks, in conmjunction with routine administrative functions, form a tremendous burden on the
crewmember’s time and are difficult to schedule efficiently. The consequences of missed training
can be severe. When flying at supersonic speeds, hesita;ing one second due to uncertainty of
one’s actions can mean death and the loss of a $20 million aircraft. Thus, ensuring all
crewmembers are trained to accomplish their mission safely and effectively is the primary mis-

sion of the TFS.

One can describe the daily scheduling problem in a TFS as follows. Each squadron has a
specified set of tasks to accomplish. Generally, the times of these tasks are fixed in advance and
for practical purposes are inflexible. Within a squadron one or more pilots are qualified to per-
form these tasks. A particular pilot performing a particular task accrues a certain measurable
benefit for either himself, the squadron, or both. Such a scheduling problem is similar to timeta-
bling problems described in [8]{17][19][27](36][46])[57]. Most of these formulations assumed
that the job times were a decision variable whereas in the TFS scheduling problem as in [27] job-
times are fixed in advance. One can also describe the daily scheduling problem as a variation of
the vehicle scheduling problem with multiple vehicle types or multicommodity flow problem as

shown in [9].

These scheduling problems have been shown to be NP-hard [37]. Consequently most
researchers have favored heuristic solution techniques such as greedy heuristics [151{49], inter-

change procedures [38] and heuristic partitioning [1]. Typically these heuristics are used in

hl'__‘ I Y A T AREON BY SRS S E—

-2.

conjunction with improvement procedures such as K-opt methods [7119]1(39].

Other researchers have focused on exact procedures such as set partitioning
[4)[41)[42])(431(53)[58] set covering [31[35)[45)(S1] Lagrangian relaxation [23],
[24){26)[34][50][57] generalized networks [2][31] and network formulations [16][21]{47].

(Though the problem discussed in [21] and [47] is somewhat different in structure.)

Exact procedures are impractical, however, when one has the objective of developing an
interactive system which one can run on a PC. This paper presents a heuristic to schedule daily
training in a tactical fighter squadron. The scheduling problem is first formulated as a transpor
tation network. A primal network network simplex algorithm is then used to assign each pilot at
most one job. As there are usually more jobs than pilots some jobs‘will remain unassigned. A
new network is then formed with the remaining unassigned jobs, the pilots, and feasible arcs,
where feasibility depends on the job assignments from previous iterations. An attempt is then
made to assign the remaining jobs. This procedure continues until all jobs are assigped or no
feasible arcs remain. If an infeasible solution results, a swapping routine attempts to find a feasi-
ble solution by swapping jobs between pilots so an unassigned job can enter the solution.
Finally, an improvement routine swaps jobs between pilots in an attempt to find an increased
objective function. The structure of this heuristic is somewhat analogous to that described in [27]
and [7), though these two procedures incorporate a greedy and matching algorithm respectively,
while the procedure outlined here will use a network simplex algorithm on a transportation net-
work to accomplish actual job assignments. The logic used follows closely that of manual
schedulers (see Appendix B) and appears promising in producing good integer solutions quickly.
Furthermore this heuristic allows the flexibility to model other factors which affect training and

the daily schedule other than the schedule itself. In comparison with other models, this approach

appears to offer the greatest advantages in terms of performance and practicality [23].

-3-

Chapter 1 describes the structure of a typical TFS and the nature of the scheduling and
training problem. Chapter 2 shows the problem formulation ands its modifications to transform it
into a transportation network. In Chapter 3 results for a series of restricted size test problems are
presented and compared' against the results of an integer programming code. Chapter 4 discusses
how one might use the model in an interactive environment to develop short and long range
schedules. Finally, a summary and conclusion with recommendations for further research is

presented.

)

v

-4-

CHAPTER 1
THE TFS SCHEDULING PROBLEM AND RESEARCH OBJECTIVES

1.1 The TFS Mission

The training a TFS accomplishes is specifically based on their tasking under peacetime and
wartime operational or contingency plans. The most common missions are air superiority (pro-
tecting friendly forces from enemy aircraft) or ground attack (destroying enemy forces on the
ground). Many units concentrate training in one area, such as F-15s training only for the air
superiority mission. Others have a mixed tasking such as an F-16 unit which may devote 60% of
its training towards ground attack and 40% towards air superiority. The heuristic developed here
is based on the requirements for a typical F-15 TFS and its pilots though the model can easily be

adopted to other organizations attempting to assign personnel to fixed time jobs.

In addition to flying training, pilots undergo training in simulators and formal classroom
refresher training on all aspects of the aircraft systems, performance, and tactics as well as enemy
weapon systems, performance and tactics. Other training includes such areas as survival, secu-
rity, social awareness, professional military education, and post graduate work in an officer’s par-

ticular area of expertise.

1.2 Duties

In addition to training, pilots accomplish specific additional duties. In an F-15 TFS these

duties are in one of the following areas:

1. Weapons and tactics: Ensures squadron members understand the operation and employ-
ment of both their own aircraft, weapons, tactics and possible enemy aircraft, weapons, and

tactics.

-5-

2. Operational plans: Maintains squadron’s peacetime and wartime contingency plans as

well as ensuring squadron members are aware of their tasking under those plans.

3. Training: Administers the flying and ground training program for new pilots (upgrade

training to combat ready status) and combat ready pilots (proficiency maintaining). Training

guidance comes from both higher headquarters (above squadron level) and from squadron

supervisors.

4. Scheduling: Schedules pilot tasking for both flying and ground duties.

S. Standards and evaluation: Ensures the squadron and its pilots meet required proficiency

through a system of ground and flying evaluations as well as routine inspections.
The following tables adapted from Air Force Manual 51-50 [56] (also see Appendix C) give a
representative listing of the typical duties one would find in an Air Superiority squadron. Sorties
are actual flights which range in length from 1-3 hours. With required prebriefing, post flight
debriefings, and mission preparation a typical sortie requires 6-8 hours of a pilot’s time. Events
are specific task which occur during a sortie. The number and type of events which occur during a
sortic are usually determined by the pilot’s themselves though some events are specifically
scheduled to occur during a given sortie. In addition some events and sorties have currency
requirements. Schedulers assign these events and sorties to ensure a pilot does not become non-

current.

-6-

TABLE 1.1

Basic Fighter Maneuvers
Air Combat Maneuvers
Air Combat Training

Instrument Training
Mission Support
Check Flights

Dissimilar Air Combat Training Confidence Flights
Day Intercept Missions
Night Intercept Missions

Specific Events uirements

Day Aerial Refueling ACBT

Night Aerial Refueling Landing

Low Level Night Landing

Aerial Gunnery Formation Takeoff
Formation Landings
Wing Takeoffs

* events not shown are not scheduled but are accomplished during scheduled missions

Representative List of Typical TFS Scheduling Requirements*
Flying
Air Combat Training (ACBQ Sorties Collateral Sorties F
Advanced Handling Cross Country
i

TABLE 12
Ground Training
. Weapons and Tactics — LYalustions
22 different subjects Air Combat Test
Gun Camera Film Review Instrument Refresher
Life SuMSurvival Plans/Other
Egress 4 Briefings
Ejection Security
Ground Survival : Social Actions
Water Survival Small Firearms
Theater Survival Dental Physical
Altitude Chamber Scheduled Exercises
TABLE 1.3
Other Scheduled Events

Meetings Irre;

Daily Standup Temporary Duty

D.O. Weekly Special Training

Schedulers Weekly Combat Tum

Flight Com. Weekly Fire Fighter

Flight Weekly Static Displays

Pilot Weekly Leave (30 days/yr)

Specific levels of accomplishment are specified in Air Force Manual 51-50 by Headquarters
USAF, the major air command (of which there are four), and the wings in the major air command
(of which their are approximately 36). There are usually three squadrons in each wing. These
levels are usually specified for a specific semiannual period. Thus the squadron organizes its

activities on a semiannual cycle.

13 Objectives

As stated earlier accomplishment of all training requirements is a substantial scheduling
task. As most squadrons schedule by ‘*hand’’ sometimes tasked training is not accomplished. In
addition scheduling is inefficient and large disparities can arise in the specific training a pilot may

accomplish. Thus the research goals are:

1. To develop a scheduling system for a typical TFS which will correct these deficiencies.
2. To develop a scheduling system which will be both user friendly and compatible for
adoption on a Personal Computer (PC). The use of a PC is important due to the lower com-
puting cost, the lack of timely access to a mainframe computer by squadron schedulers, and
the ability to carry the PC with them when a squadron deploys to a remote location.

3. To develop a system which offers solutions to daily schedules fast enough to work in an
interactive role with squadron schedulers. D:ewdymicfactonsuchumdmn.nd
maintenance problems, scheduling inputs can change on short notice requiring quick solu-
tions. Also, given the large number of inputs into a schedule, many of which are difficult to
model without large increases in complexity (and execution times), an interactive approach
is critical in determining an acceptable solution.

-9.

In developing the scheduling system the objective chosen is the maximization of training

benefits to the squadron. This best meets the squadron needs for two reasons:

1. Flying time, the number of missions flown, fuel costs, and other variables, are usually
fixed above the squadron level. In addition, these levels are fixed based on many exogenous
factors such as Congressional budgets and the expected reliability of unit aircraft.

2. Maximizing the benefits gained from training are generally the stated goals of the squa-
dron.

These benefits are measured both directly and indirectly. As stated earlier, specific number
of training events are directed by AFM 51-50. In addition commanders have a certain degree of
flexibility as to which type of training they accomplish. For example, AFM 51-50 specifies no
specific number of Basic Fighter Maneuvers (BFM) sorties but instead specifies a specific number
of Air Combat Training (ACBT) sorties of which BFM is one type. A commander may specify
what percentage of ACBT sorties will be BFM based on his own judgement. As shown later
hopefully supervisors can translate these training goals and requirements directly into scheduling

outputs.

-10-

CHAPTER 2
MODEL FORMULATION

2.1 The Daily Schedule

A graph G(N ,A) consist of a set N of nodes and a set A of unordered pairs of nodes called
arcs. The arc i — je A withi,j e N implies a direction of fiow from node i to node j. If each arc
in A has a number associated with it, such as a price per unit flow over the arc, the graph is

termed a network [33).

Consider the scheduling problem where one has a set of bilots I who are available to per-
form a set of required jobs J. For the purposes of this paper a job j is considered to be the two-
tuple of a given task type and time span of the task occurence. For example task type o may start
at 0600 and last 3 hours until 0900. Call this job A. Job B is also a task type a, however it starts

at 0800 and, as it is also a task type a, last 3 hours until 1100,
TIME

%%%i%i%
JoB A)
S
JOB B \ ﬂ/
J08 C gf C
J0B D)
J08 E 9 ﬁkf
IR

O - INDICATES JOB START TIME
I - INDICATES JOB STOP TIME

FIGURE 2.1. Task type/Task time Two-tuple representation of Jobs

-11-

Notice in Figure 2.1 that jobs A and B overlap timeperiods. Thus one individual could not

perform both jobs.

For the scheduling problem presented here each pilot i€/ is qualified to perform some sub-
set of the jobs jeJ. One can show these qualifications in a network such as the one depicted in
Figure 2.2. This is a bipartite network representation of the scheduling problem. Bipartite means
that one can separate the nodes into a left or right group (here pilots are on the left and jobs on
the right). Each directed arc from pilot i to job j indicates that pilot i is qualified to perform job
j. The number above the arc represents a measure of the "Benefit” of pilot i performing job j.
This benefit may be thought of as a price received for each unit flow across an arc from i to ;.

Chapter 4 discusses how this benefit is determined.

FIGURE 2.2. Bipartite Transportation Network

-12-

To understand what is meant by flow note that §; , i =1,....n represents how many pilots of
“type” i exist. Since each pilot i is a unique individual all S; i < are equal to 1. D; represents
the number of jobs j. D, is some integer value 2 1. Note that one could have two or more of the
same task-types occurring at the same time. The S; represent the supply or input into the left side

of the network while the D; represent the demand or output on the right hand side.

Stated another way the 3'D; jobs demand the services of 3'S; pilots. Thus the supply of

j=l is]
pilots flows across the arcs to meet the job demands. The two numbers below the arcs indicate the
minimum flow allowed across each arc (here O for all arcs) and the maximum allowed (infinity

for all arcs).

The situation often arises where one may have more jobs than pilots. Thus pilot i=m is
designated a "Bogus” or dummy pilot to handle excess jobs. Conversely one may have more
pilots than jobs thus one has a dummy job or sink for these pilots to perform which is designated
job j=n. Consequently, to maintain supply equal to demand one has

a-1

Sm = EDI
Jj=1

-m~1
Du = ZS.'
iwl

-13-

The objective sought is to have flow move across the arcs in such a way that one gains the

maximum total benefit. Therefore this network formulation may be represented as the following

optimization problem:
Maximize i é B,'j 'P,'l' (l)
i=l jml
j=1
_Zi P;j=D; 3)
P;; 20 and integer @)
where

I =Set of Pilots {i=1,2,3,..,m}

J =Setof Jobs {j=1,2,3,...n}

D; =Job j’s demand

§; =Piloti’s supply

B, =Benefit (price) of pilot i performing job j

P;; =Pilot i performing job j

The above formulation is an example of the classical network transportation problem [33).

Network theory proves that the optimal solution to the above problem will have an integer solu-
tion since all supply, demands, and arc bounds are integer [11]{13])[33]. Various algorithms exist
which can efficiently find the solution to such problems. One of the fastest methods is the primal
network simplex algorithm [12]. A brief description of how the algorithm works appears in
Chapter 3. For a more detailed explanation of the algorithm and computer implementation the
reader should refer to [13]{20]1{281{29])(52). Note that the solution to the network problem as
stated will in essence assign each pilot to one job. Thus one avoids the problem mentioned earlier
of two jobs overlapping and the infeasibility of assigning one pilot to do both jobs. Consequently

this restriction is not explicitly stated in the transportation problem as it is implicitly enforced.

-14-

However jobs will be assigned to the bogus pilot if

a-l m-1

2D > XS

Jj=l in]
Even if there are enough pilots to cover all jobs one may have jobs assigned to "Bogus" as one
has no guarantee that pilots exists who are qualified to perform any job given. This situation
would mean no feasible solution exist. For the purposes of this paper, unless stated otherwise, a

feasible solution is assumed to exist. However, this feasible solution may require pilots to per-

form more than one job.

The following example helps to illustrate this point :

FIGURE 2.3.1. An Initial Solution to a Scheduling Problem (Only arcs with flow are

shown)

-18.

From the initial transportation problem pilot 1 is assigned job A, pilot 2 job C, and
**bogus’’ pilot 3 job B. As jobs A and C are assigned to real pilots one is left with a new a_ssign-
ment problem, namely to assign job B to a real pilot. Say jobs A and B have the start and stop
.times shown in Figure 2.2. Since Job A starts at 0800 and ends at 1100 while Job B starts at 0900
and ends at 1200 pilot 1 cannot perform Job B. Consequently one has the following new network

structure based on the previous job assignments.

FIGURE 2.3.2. New Network Structure Following Initial Assignments

ER A

Tay e

-16-

Arc cost are only shown on those arcs which are now infeasible based on the initial job

assignments. Notice that since jobs A and C have been assigned their demand has dropped to

zero. For each pilot i, if performing job j would conflict with a job k assigned to pilot i, then the

benefit price of that pilot performing job j is changed to a value less than ~M where M — oo,
Notice that the Bogus pilot arc prices are always —M. Thus a pilot with an arc price < -M is
never assigned to the job that such an arc points to. Consequently, the optimal solution of the net-

work in Figure 2.3.2 is

FIGURE 2.3.3. Final Solution

ey

-17-

In summary, to assign jobs assigned to the "Bogus" pilot m from the first iteration the prob-
lem is restarted with these ‘‘Bogus’* assigned jobs. All infeasible links have their arc price set to
< —=M where M — o, Infeasible links are th§ P, such that for a given P;; 20 , j#n ,k € J;
where J; is the set of jobs including j which overlap the time periods job j occurs. In other

words, if a pilot is busy performing job j during the time job k occurs then he cannot perform job

k.
Thus on the second and subsequent major iterations the following reduced problem is
solved.
Maximize f; i: BI™eP, foralljel,,)
in] ju
st i‘ Py=S§; foralljeJ,, (6)
il’,-, =D/ forallj € J,, €))
P; +Py=0or Mforallke J; , k #j,j#n)
P;; integer 20 forall j € J)

Jrem = Set of unassigned jobs J,,,, cJ
D[*™ = updated demand for job j € J,,p

B = updated benefit of pilot i doing job j € J,,,

-18-

The algorithm is summarized as follows:
ALGORITHM A
STEP 0. Input pilot qualifications and jobs.
STEP 1. Assign each m — 1 pilot at most one job. If all jobs assigned or no
feasible arcs exist for unassigned jobs go to step 3.

STEP 2. Determine infeasible arcs from assignments made in step 1.
Change cost on these arcs to -M. Update job demands and benefit prices based on
previous job assignments. Return to step 1.

STEP 3. Print schedule.

The cycles recur until all jobs are assigned or no feasible arcs remain. The nature of the typ-
ical daily flying schedule most often restricts the number of iterations to two with rarely more

than three iterations occurring before all jobs are filled or an infeasibility occurs.

>

-19-

Infeasibilities occur when on subsequent iterations no pilots are available to perform one or
more available jobs. With 24 flying jobs and 10-16 ancillary positions to fill there are generally
enough pilots available to *‘fill’’ a schedule. However when a job exists with few pilots qualified

to do it (i.e., few entering arcs to the j node) infeasibilities can occur. The following example

illustrates this point. The dummy supply and demand nodes have been omitted. The table at the =
,‘ bottom of the figure gives the start and stop times of jobs A,B, and C.
N
¢ -
i!
¢
<
% %Z %‘%_ ?
H -
‘ JoB €

FIGURE 2.4. Network Structure of the Problem

-20-

In this example Pilot 1 is qualified to perform all three jobs while Pilot 2 is only qualified to
perform jobs A and B. On the first iteration Pilots 1 and 2 are assigned jobs A and B respectively.
Job C remains unassigned so a second iteration begins. However, no feasible solution exist since
Pilot 1 doing job A is busy when job C begins and pilot 2 is not qualified to perform the job. Had
pilot 1 been assigned job B instead of A on the first iteration, a feasible solution would exist.

Several approaches to avoid such infeasibilities exist.
2.2. Handling Infeasibilities

2.2.1. Fillindexes

First one could restructure the price of each pilot performing a particular job to steer a pilot
towards a feasible schedule. By dividing the number of pilots qualified to perform a job by the
number of jobs, one gets an average number of pilots qualified to perform each job. This is simi-
lar to the supply demand ratios used to rank order time categories by Glassey and Mizrach [27].
Call this the fillindex of job j. Note that having 10 jobs with 10 pilots qualified to perform the
job gives the same fillindex as having one pilot qualified to do one existing job. However one has
greater flexibility in assigning the 10 jobs since undoubtedly some pilots can perform the same
type of job twice due to time staggering between jobs. Thus one also needs a measure of how
many jobs a pilot is precluded from doing if assigned job j and how hard (fillindex) the jobs will

be to fill that he is precluded from doing. Thus one might use a price as follows:

w1

By=(*B;)+ forallk € J; A I

}E fillindex,
where J; is the set of jobs pilot i is qualified to perform.
B;; above is a price structure based solely on "benefit". Here w; + ®; = 1. With this price struc-

ture and @, > O a pilot is less likely to perform a job which interferes with a large number of

other jobs he is qualified to perform. This is especially pertinent to jobs for which there exist a

-21-

large number of other pilots qualified to perform it. Setting the weights ©, and , is difficult,
however. o; =1 and w, =0 gives full weight to the benefit function while @, =0 and w, =1 gives

full weight to scheduling feasibility.

In testing of several schedules no discernible pattern arose which could consistently guaran-
tee that infeasible schedules would not arrive regardless of the exact values of o, and w,. Furth-
ermore arbitrarily setting ©, > 1 assumed some degree of infeasibility existed which is generally
not the case. In setting ©, > 1 one would sacrifice some degree of optimality to achieve feasibil-
ity even though not required. To resolve this problem one could set &, = 1 and , =0 and attempt
to solve the problem. If a feasible solution is not found the problem can be restarted with «, < 1
and o, > 0 and rerun. One could go so far as to program a stepped increased in ©, (with a con-
current decrease in ;) until a feasible solution was found or until o, =0 and @, = 1. However this
would be unduly time consuming and one would in the end still have no guarantee of feasibility.
In fact it is relatively easy to develop schedules for which the proposed fillindexes fail to achieve

feasible solutions.

2.2.2. Natural Structure

A more intuitive approach incorporates the natural structuring of a daily flying schedule to
avoid infeasibilities. When flying 24 sorties in a day squadrons do not fly 24 different aircraft.
Takeoffs are grouped in *‘go’s’’ . For example 10 aircraft may launch in the morning “‘go”’.
Eight of these aircraft will launch in the midday ‘‘go’’ with two of the moming aircraft acting as
spares. Then there may be a third ‘‘go’’ with six aircraft launching and four acting as spares.
With such groupings pilots are generally available to fly in the third *‘go’’ after debriefing their
missions from the first *°go’’. Other scheduled ancillary duties such as supervisor of flying, squa-
dron supervisors, and mandatory meetings, lack this natural ‘‘grouping’’ in scheduled time.

Characteristically individuals who perform these ancillary jobs are the same individuals , such as

-22.

instructor pilots (IP) and flight examiners (SEFE), who are qualified to perform jobs with rela-
tively low fillindexes . One could accomplish much the same affect as desired with the pricing
scheme by assigning these ancillary jobs first, then assigning the flying jobs. This avoids situa-
'tions where the pricing scheme does not capture scheduling hindrances that may exist. For exam-
ple a schedule may have 10 basic pilot jobs to fill with 10 pilots qualified to perform these jobs
giving a fillindex of one to each job. In addition one IP job and one SEFE job may exist with one
of the 10 pilots qualified to perform both of these jobs. Therefore both the IP and SEFE job
would have a fillindex of one. Depending on the exact times the jobs occur, the B;; derived in sec-
tion 2.2.1 may or may not steer this uniquely qualified pilot into these two jobs before he is
assigned to a pilot job which interferes with his accc nplishing the SEFE and IP job. However,
by segregating the SEFE and IP jobs and assigning them first, 9 pilots would be left to fill the 10
pilot jobs with a high likelihood, due to the natural grouping of these jobs, that a feasible
schedule, flying one pilot twice, could quickly be found.

Such clusterings are similar to the partitionings outlined in [7]. However here one is estab-
lishing clusters based on empirical observations about the general characteristics of the assign-
ment process as opposed to objective criteria such as the actual start and length of particular jobs.
In an earlier formulation of the daily scheduler algorithm such clusterings of jobs was attempted.
At ¢ =n all jobs that started at that time were assigned to pilots i who were qualified and availble
where availability was based on jobs assigned to pilots i from¢ = 1to: = a - 1. Typically there

were at most four jobs with the same start times with the most common number being two. This

generally resulted in 10 to 15 clusterings with each clustering requiring the initialization and
solving of a transportation (albeit small) problem. This strategy tended to be unduly time con-
suming. With this procedure there also tended to be a higher rate of infeasibility since only jobs
starting at a discrete time period were considered. Thus towards the end of the day individuals

who were uniquely qualified or were one of a few who were qualified to perform a job were often

[4
LN

-23.

unavailable to be scheduled. Finally, this procedure resulted in a poorer overall objective value,
as one might expect, since one is in essence optimizing over several small subsets of the same

problem and adding the results. In the procedure finally adopted a more global approach is taken

since in general one to four clusters only are employed.

For feasibility purposes the two basic clusters used were:
1. Essential ground jobs.
2. All other jobs.
Other groupings can be made that make restrictions such as no two nonflying jobs of the same

type on the same day and pairings easier to manage. This point will be discussed in greater detail

later.

-24-
Thus the revised heuristic may proceed as follows:

ALGORITHM B

STEP 0. Same as ALGORITHM A. In addition set c =1 where
¢ € C, C = Set of job categories , {c =1,....d).

STEP 1. Assign category ¢ jobs.

STEP 2. Determine if all category ¢ jobs are assigned or if category ¢ jobs
remain but there are no feasible arcs to these jobs. If so and ¢ #d , setc =c +1
else goto step 4.

STEP 3. Determine the infeasible arcs and update prices and demands as

before. Return to step 1.

STEP 4. Print schedule.

This approach was superior to the fillindexes in most cases in its ability to resolve infeasi-
bilities. However, again, in most cases infeasibilities would not exist under the basic algorithm.
To restrict the problem to solving job assignments by categories may unnecessarily increase solu-

tion times. Conversely one still has no guarantee of a feasible solution.

2.2.3. Swapping

In a final attempt to resolve infeasibilities one could instead or in conjunction with the
above procedure use a swap routine in an attempt to produce a quick feasible solution. The rou-
tine starts if one enters step 4 of Algorithm B with unassigned jobs. The swap routine uses &
pointer to indicate which pilots are qualified to perform the unassigned job(s). Another pointer
tracks the remaining feasible arcs. If one or more feasible arcs exist for each conflicting job

assigned to a pilot who is qualified to perform the unassigned job, the unassigned job is assigned

.25

to this pilot. The conflicting jobs which were assigned to this pilot are "unassigned” and thrown
back into the job pool. Another simplex iteration is then started where, since feasible arcs to
these jobs exist, these newly unassigned jobs are filled by other pilots. If one cannot find a pilot
for which there are feasible arcs to all of his conflicting jobs (those jobs he is assigned which
prevent him from performing the unassigned job) one assigns the unassigned job to the pilot with
the lowest number of conflicting jobs. In case of ties assign the unassigned job to the pilot who

has the highest B,;.

Once a swap has been made the jobs swapped to a pilot are permanently assigned to him.
In this way one prevents cycling in later iterations and thus guarantees termination of the algo-
rithm although one may still terminate with an infeasible solution. This situation would most
likely occur after several iterations of assigning unassigned jobs to pilots through the swap rou-
tine. Thus in the latter iterations relatively few pilots exist who can swap out assigned jobs to
pick up an unassigned job. However this situation has yet to occur with testing of real world

schedules.

Consider the jobs A through F with start and stop times shown in Figure 2.5.1. Based on
the network structure (not shown) pilot 1 was assigned job A, pilot 2 job C, and pilot 3 job D on

the first iteration.

JOB A
JOB B
Jos C

Jo8 0
JOoB E

JoB F

FIGURE 2.5.1. Job Start and Stop Times

-27-

On the second iteration pilot 1 was assigned job B. No further assignments were made as no
feasible arcs remained. The resulting schedule is shown in Figure 2.5.2 with jobs E and F

assigned to Bogus. Since no feasible arcs to these jobs exist the swap routine starts.

oGUS

FIGURE 2.5.2. Initisl Solution (sink node and flows not shown)

.128-

Pilots 1 and 2 are qualified to perform Bogus job E however pilot 1’s job B and pilot 2's job

C interfere with job E. Scanning the feasible arcs we find that pilot 2 can perform job B and C.

Thus pilot 1 drops job B which pilot 2 picks up freeing pilot 1 to pickup job E. The new assign-

ments are:

w i

FIGURE 2.5.3. First Swap Assignments (Swapped and newly entered arcs are dark-

ened)

-29.

Now pilots 2 and 3 are qualified to perform job F. Pilot 2's job C interferes as does pilot
3’s job D. Since both pilots would have to drop the same number of jobs in a swap, one com-

pares their B;; . Pilot 3 has a higher B;; thus pilot 3 drops job D which is picked up by the Bogus

pilot and pilot 3 picks up job F.

FIGURE 2.54. Swap Basedon B;;

<30-

Pilots 1, 2 and 3 are qualified to perform job D which was just swapped to Bogus. However
as job D interferes with job F, (which was ‘‘swapped’”’ to pilot 3), pilot 3 cannot pickup job D.
Job 4 also interferes with pilot 2's job C and pilot 1’s job A. Pilot 1 has a higher B;; and drops

job A while picking up job D. A feasible arc exists from pilot 3 to job A thus pilot 3 now picks

up job A through a simplex iteration.

FIGURE 2.5.5. Swap with a Simplex Iteration

If pilot 1 and 2 had not been qualified to perform job D the algorithm would have ter-

minated with job D assigned to Bogus.

-31-
The following is a summary of the revised heuristic with swapping and job categorizing.

ALGORITHM C

STEP 0 through 2. Same.

STEP 3. If all category ¢ jobs are assigned go to step 9. Else determine the
infeasible arcs and set their cost to M. If any feasible arcs exists for unassigned
jobs gotostep 1.

STEP 4. Determine I; = Set of pilots i qualified to perform unassigned
job j . Note that if Pilot i is assigned any conflicting job n which was "swapped"
to him that he is not "qualified" to perform job j. If /; is empty assign job j to the
"Bogus" pilot and go to step 3.

STEP 5. Determine I, = Set of pilots x who are available to perform
conflicting job y €J; assigned to piloti € J;.

STEP 6. Find a pilot i € I; for which there are pilots x € I, for all
conflicting jobs y assigned to pilot i. In case of ties select the pilot with the
highest B;;. If found then go to step 8.

STEP 7. Find the pilot i € I; with the lowest number of conflicting jobs y
for which there are no pilots x € 7,. In case of ties select the pilot i with the
highest B;;

STEP 8. Assign job j to pilot i and unassign all conflicting jobs y and place

them in category c¢. Goto step 1.

STEP 9. Print schedule.

In summary this procedure attempts to swap jobs to resolve infeasibilities while disrupting

the present schedule as little as possible. Should infeasibilities still exist in the final solution,

-32.

schedulers can often resolve them quickly by relaxing constraints such as the length of a particu-
lar job. In fact one could program such relaxations however the increase in complexity would
likely weigh against the benefits of such a procedure. Resolving such problems interactively has
worked well in similar models as shown in [21]. These interactive asper;ts are discussed in more

detail in Chapter 4. Figure 2.6 shows a flow chart for the daily scheduler.

—

FIK. F110%8
THRT CAY DC
BOSUS ASSIGNED

.] ooes
ENTER DATA

ASSIGN BOIUS -
ASSIGH JCBS :ﬁ :‘I’XE‘ azsy B¥AP OUT ALL OF
THE FILOT'S JOBS? ot
=] ASSIGN 70 BOGUS |
AESIGN JOE TO
. . PILOT VITH FEV-
PILOTS UPDATE DEMAND . EST CONFLICTS.
: WITH TIES ASS) _j
AVAILABLE? AKD PRICES TO BEST Bij
.o

PRINT SCHEDULE

FIGURE 2.6. Daily Scheduler Flow Chart £

-33-

2.3. Increasing the Time Horizons

Note that one can select any desired time horizon for assigning jobs. However the dynamic
environment in which flying sorties occur often degrades planned training into alternate missions
or mission aborts. Thus schedules created based on anticipated accomplishment of specific train-
ing events occurring at specific times will quickly lead to distorted scheduling. Indeed one of the
primary goals in developing this heuristic is to allow schedulers to react quickly to unanticipated
changes in a timely manner. However, a long range schedule, of say a week, may provide some
benefit, especially in its assignment of non-flying duties which rarely change. In addition, a pilot
can gain a general idea of which events he will accomplish the following week and squadron
scheduling can identify possible problems such as a shortage of pilots qualified for a specific jobs.
By highlighting possible infeasibilities early, squadron supervisors may be able to rearrange the
conflicts which create the infeasibilities. Obviously the longer the time horizon the longer the
schedule will take to run. However, after completing the next day’s schedule, scheduler’s could
allow the model to run in the evenings after the completion of daily flying and review the results

the next day. Thus they would have an updated weekly schedule each day.
2.3.1 Truncation Effects

As outlined in Chapter 1 and will be discussed in greater detail in Chapter 4 most of the
training events that are of a required nature have an associated due date or currency. Thus the
very real problem exists that in limiting the time horizon that one may induce serious distortions
into the daily schedule due to myopia. As mentioned above the high levels of uncertainty would
appear to make attempts at scheduling on anticipated states more than one or two days in advance
somewhat dubious in their value. Also the level of complexity involved in advancing the schedul-

ing system beyound a deterministic to a stochastic model may make the PC compatibility goal

unattainable. However this point has not been pursued in depth and remains an open area of

-34-

research for the purposes of the daily scheduler. A look ahead feature is partially captured in the
price structure used to determine the relative measure of benefit of a pilot performing a particular
job. This price structuring will also be discussed in Chapter 4.

24. Incorporating Additional Constraints

24.1. Pairings

As mentioned to earlier, there are advantages to categorization when attempting to pair
pilots. A pilot, for example, may have to fly with an instructor pilot to regain flight currency. In
addition, tactical fighters, as a matter of doctrine, usually operate in pairs or combinations of pairs
with one pilot designated the flight lead and the other a wingman. Some units supervisors like to
pair the same pilots for the obvious benefits gained with two individuals always operate as a
team. To accomplish this one could divide jobs into flight lead and wingman (or for two place
aircraft such as the F-4 into front-seat back-seat). In the manner described in Algorithm C jobs
are then assigned by categories. After ground jobs, flight lead positions are filled. Each job a
flight lead fills has a paired wingman job associated with it. The paired wingman job has an asso-
ciated variable indicating which pilot fills the flight lead position. As the price matrix is restruc-
tured for the next iteration in step 3 of the algorithm, if Pilot A’s paired flight lead occupies the
flight lead position then that pilot’s price for doing the paired wingman job increases by some
factor. One could force a pairing by setting all prices on the arcs to the paired job to < - M
unless that individual is the paired wingman for the job. However this increases the likelihood of
infeasibilities. A similar logic can work for pilots requiring instructor pilots to regain lapsed
currency or to accomplish upgrade training. These pilots are assigned first then a vector indicates

the desirability or requirement for an IP in the paired job.

One can prevent pilots from working together in a similar manner. Sometimes supervisors

do not wish centain individuals to fly together. After flight lead jobs are assigned, if pilot i is

-35-

qualified to perform the paired job of some other pilot x, but pilot i and x have been identified as
two individuals who are not to fly together, one simply changes the price on pilot i’s arc to the

paired job to < - M.

As before, setting the value of these pairing factors involves tradeoffs. How much more
beneficial is it for pilot A to receive upgrade training with an IP than for pilot B to fly in the same
slot on a standard mission? In addition preventing two individuals from working together
increases the likelihood of infeasibilities. To give supervisors a clearer picture of the tradeoffs

involved in attempting to schedule to satisfy normal training requirements vs pilot pairings, a

group of graphs similar to the ones shown in Figure 2.7 may be developed.

-36-

° j}s‘f 100%

8) Select pairing weight.

b) Read right to the intersection off the curve.

¢) Read down for the percentage of currency period remaining below which
pilot currency will overide a pilot paring in a competing job slot.

FIGURE 2.7. Tradeoffs Between Pairing Pilots and Currencies

-37-

For those pilots requiring IPs for currency requalifications the pairing factor should be high
as having pilots noncurrent in some event is highly undesirable. For other IP jobs the tradeoffs
are less clear. A TFS has a requirement to complete upgrade training (which requires IP’s) in a
specified period of time but this should not be at the expense of proficiency flying for those pilots
who are already combat ready. Obviously empirical experimentation and to an extent intuition

will have to be used in determining relative weights.

2.4.2. Length of Tour Constraints

Another constraint which is incorporated into the basic daily scheduler is the crew rest and
duty day constraint. Pilots are restricted from having a duty day of greater than L, l\c;urs where
the duty day begins at the start of the first job and ends after the last job is completed. In addi-
tion, pilots must have L, hours of uninterrupted free time following their last duty before they can

start a new job the next day.

To enforce these constraints one simply appends those jobs to J; which would cause duty
day or crewrest violations if job j is assigned to pilot i. The length of the duty day and crewrest
are user selected though current Air Force regulations specify a 12 hour period for both. So for
the standard TFS model all jobs which start less than 12 hours after job j ends and end more than
12 hours after job j begins are appended to J; since they would violate the duty day restriction.
Likewise all jobs which end less than 12 hours before job j beging and start more than 12 hours
before job j begins are appended to J; as these jobs interfere with crewrest. In this manner
crewrest constraints are enforced for the entire time horizon during any one run of the scheduling
program.

After all jobs are assigned one updates the pilots nonavailability due to crewrest constraints
in the availability file. The availability file is just that, an input file which tracks a pilot’s availa-

bility. The data from this file, which also includes manually scheduled jobs as well as long range

-38 -

scheduled jobs, is used an input into subsequent runs of the daily scheduler. In this manner jobs
scheduled in the future are not scheduled in conflict with crewrest constraints from past

schedules.

2.4.3. General Constraints

One can enforce constraints of a general nature through the appropriate structuring of the J;
set. For example by appending all jobs of the same type as job j to J,' one will exclude an indivi-
dual from performing more than one type of job j for a given time horizon. In general if by per-

forming job j an individual is excluded from job k, simply append job & to J,-'.

2.5. Improving the Solution - An Interactive System

The Algorithm C provides a solution to the scheduling problem. Again though, one has no
guarantee of feasibility much less optimality. Empirical results on a limited number of test prob-
lems (see Tables 3.1,3.2 and 3.3) have been encouraging in both the perceived quality of the
solution and the execution times. However one may be able to improve the solution while meet-
ing required time criteria. The time available to generate a solution will vary. Preparing
Wednesday’s schedule Monday evening one may be able to allow the algorithm to run all even-
ing. However on Tuesday morning one may need a schedule within a minute as one react to
changes brought about as a cold front moves through. Under such variable conditions allowing
the user to select the desired level of optimality, with the attendant time increases for solution,
would seem an advantageous way to implement the daily scheduler. Under this scheme Algo-
rithm C is run with all jobs in one category. In most cases this will produce an acceptable
schedule in the minimum amount of time. If infeasibilities exist however, the current solution
with infeasibilities is presented onscreen while the scheduler program restarts with the two
categories mentioned earlier. For relatively minor conflicts the operator may be able to resolve

them before a new computed solution appears by simply relaxing constraints. If so he can manu-

-39.

ally terminate the program. If not the swapping routine with job categories will most likely
resolve any conflicts if possible. Such a feasible solution will likely be ‘‘good’’ enough. If time
permits though, the user may elect to let an improvement routine attempt to find a benter (higher
objective value) solution. This improvement routine is a modification of the swap routine given

in section 2.2.

NO
pggeed 1M RCVE SCLUTION |
YES
-
SEE FIGURE 2.6
90
PRINRT SOIUTION
NO
CG'TIKUI:?/
YES

FIGURE 2.8. Apperided Flow Chart for Algorithm C With Improvement Routine

-40 -

In the improvement phase one starts by rank ordering all of the assigned jobs in ascending
order based on their arc prices. Starting with the lowest priced job as the input job j one initiates
the swap routine. If the pilot who is currently assigned job j can take all of the conflicting jobs y
of pilot i € /; then one checks to see if such a swap will lower the objective value. If so the swap
is made. In case of ties one uses the higher objective value increase to determine which pilot
gets the job. This procedure continues until the last job is checked. Jobs are then reordered based
on their new (if any) arc prices and the procedure repeats. This recurs until manually terminated
or one cycle through all of the jobs can produce no objective value improvements. Note that if we
enter the improvement phase with an infeasible solution that a possibility exists for finding one
during the improvement phase even though the swap routine failed to do so. This is because one
is looking at the jobs in a different sequence and one does not enforce the restriction of not swap-
ping out jobs that have been labeled to a pilot. In addition one is evaluating candidates for swap-
ping based on raising the objective function as opposed to minimizing disruptions. This slight

change in logic in effect perturbs the solution that might exit the swap routine and thus may even-

tually lead one down the road to feasibility.

-41-
To summarize the improvement phase:

IMPROVEMENT ALGORITHM

STEP 0: Rank order all jobs 1... m-1 in ascending order by arc price. Set j = 0.
STEP 1:; Setj=j+1. If j = m go to step 6.

STEP 2: Determine /; as before except pilots are not precluded from /; if they
are swapped any job. If/; empty go to step 1.

STEP 3: Determine J,. I, can only contain the pilot who originally had job ;j .
If empty go to step 1.

STEP 4: Find each i € I; for which pilot x determined in step 3 can take each y
assigned to pilot i. If none to go step 1.

STEP §: Find the i in step 4 whose swap would cause the maximum increase in
the objective value. Make the appropriate swap if the objective value is raised,
else go to step 1.

STEP 6: If any swaps have been made go to step O else print solution.

Note this is essentially a modified 2-opt improvement procedure {9](39]. In this case how-
ever assigning job j to pilot i may mean dropping more than one job from i . Conversely the

pilot x that picks up a job dropped by pilot i on a swap does not drop any job other than the job j

-42-
CHAPTER 3
RESULTS

3.1 The Network Simplex Code

To solve the network problem a primal network simplex code is used. To start the algorithm
one requires an initial solution. Various methods exist to get such a solution but one of the sim-
plest and fastest is the all artificial start or "Big M" method. To see how this method works note
that S,, — D, gives the aggregate excess supply if positive, or aggregate excess demand if nega-
tive. Using this number one can merge the Bogus and sink node into one node which is called the
root node. Supply arcs connect the root node to the job nodes and demand arcs connect the root
node to the pilot nodes. By setting the flow on all of these arcs equal to the corresponding supply
or demand from the corresponding pilot or job nodes one gets the initial solution to the transpor-

tation problem as depicted in Figure 3.1,

ZS~-2D

FIGURE 3.1. Initial Solution Using the Big M Method

-43-

Before proceeding further a clarification needs to be made about arc prices. The primal net-
work simplex code used here actually seeks to find the minimum cost to the objective function.
Consequently, on maximization problems one actually enters negative arc prices on the arcs. In
this manner one gets a maximization solution to the problem by just multiplying the results by -1.
To be consistent "good" arc prices will continued to be written as posi tive values while negative

arcs values indicate "bad” values.

All of the antificial arcs actually have a value of < — M in the code. Recall also that any
infeasible arc also has a price of < — M. Consequently if any of the arcs in Figure 3.1 are
replaced with arcs having prices 2-M the objective value will improve. The network simplex
algorithm conducts this interchange of arcs until no further exchange will improve the solution.
To see how this is done note the character of the graph shown in Figure 3.1. All arcs span down-
ward from the root node. This rooted spanning tree graphically displays a possible solution, or
basis to the scheduling problem. Now one would wish to see if one could improve it. Consider
the possible entry of an arc from pilot 1 to job A. If this arc enters the "basis” the arc from the
root to the job A node will have to leave since the arc indicates who is performing the job and
only one "pilot” can perform the job (this isn’t quite correct but will serve for pedagogical pur-
poses now). Consequently the arc connecting the root to job A is "cut". Thinking of the job A
node as a ball on the end of a string one can visualize it falling as the root node arc is cut and the

ball swings down to hang under the pilot 1 node (Figure 3.2).

FIGURE 3.2. A Network Simplex Pivot

(&

.45 -

Finding a node whose entry into the basis will lower the objective value is known as pric-

ing. Determining which node will leave as a result of this arc entering is known as a ratio test.

v Restructuring the tree following this exchange of arcs is called updating the basis and together
o with the ratio test is called pivoting. i
Various schemes exist to price arcs but they all have one action in common which is deter-

A; i mining the reduced cost of a potential arc entering (recall that the network simplex code is actu-
" ally seeking to minimize cost). Consider following a path down from the root node to each node

in the tree. Starting each trip from the root node with a sum of 0, add the price of an arc traversed

:.E::‘: if moving in the same direction as t.h; arc and subtract the cost of the arc if you traverse the arc

::‘:': opposite the directier it points. When you reach a node the net sum is the node potential or dual "

N price of the node. In the previous example one could evaluate the reduced cost of the arc from =
:;:::: pilot 1 to job A as follows:

h';'. Reduced cost = Dual of the from node + cost of the arc - Dual of the to node

\:f'?i"' If this reduced cost is less than 0 then the overall objective value is reduced (raised for a maximi-

‘%E: zation problem) if this arc enters. In the network simplex algorithm used here each arc from a ’
: given pilot was priced and the one with the largest (if any) reduced cost was pivoted in. This stra-

tegy is known as row most negative or outward node most negative rule. Other more complex

methods exist but were not considered due to the small size of this problem in network terms.

‘ The routine of pricing and pivoting continues until no arc prices with a negative reduced

'é cost. At this point the solution is optimal and the algorithm terminates.

1,

",i‘ The actual primal network simplex code is contained within the computer code for the

‘; scheduling algorithm located in Appendix F. The code uses a 6 node- length and 3 arc length list ;{

to represent the network basis. The node functions consist of the predecessor node, the predeces-

sor arc, thread, depth, up, and dual functions. Denoting a particular node as i and arc as k, the

basis tree was described by the Pred(i) and Predi(i) functions. The Up(i) function indica ted

o
ey

Lo
- e -

- 46 -

whether the predecessor arc pointed up or down. The Thread(i) and Depth(i) functions were used
in pivoting. The Dual(i) was also maintained as a node function. Data was read in Forward Star
form . Forward Star indicates that arcs are listed by the from node in ascending order. By storing
the arcs in this fashion one did not have to store the "from" node as all was needed was a pointer
to the first arc emanating from a given from node. The to node was stored in the Bnode(k) func-
tion while arc prices were stored in the Price(k) function. The basis solution was indica ted by the
flow over the arcs which was stored in the Flow(k) function. As all upper arc bounds were and
lower bounds 0, they were not explicitly stored. The data storage requirements for this code will
vary depending on specific coding techniques. Many tradeoffs can be made between storage limi-
tations and execution speed by storing data explicitly in core. Given the storage limitations of
PCs though the author is presently developing a minimal storage version of the algorithm. Desig-
nating NP as the number of pilots, NJ as the number of jobs, NA as the number of arcs, and NC
the number of job categories used the major storage requirements would consist of the following

(A constant cost structure is assumed, pairing designations are not enforced) :
The 6 node length arrays described above * (NP + NJ + 1).

The 3 arc length arrays described above * (NA). Note that infeasible arcs
can be designated by changing the sign of their arc prices.

A pointer to the first arc of each pilot and a pointer to the first job of each
category,ie. 1* (NP +NC+1).

A pointer for each pilot to the first job he is assigned. Each job has a pointer
to the next job assigned to the pilot. The last job assigned to the pilot points back
to the pilot. The node number of labeled jobs have a negative value. 1 * (NP +

NI+ 1).

The start time and length of each job. 2 * (NJ).

AT, 8 LTy, O TR
L N Il IRVt

-47-

The demand and supply levels for each job and pilot. 1 * (NP + NJ + 1).

The set of jobs which conflict with a given job. One does not have to store
this as scanning all the jobs start and stop times would give the conflict informa-
tion. However as this set is used as a general use con straint enforcer and the
conflict comparisons are done so frequently in the code the direct storage of this

set is deemed beneficial. (NJ) * (NJ) worst case.

This would give an approximate total storage requirement of 9NP + 10NJ + (NJ *NJ) + 3NA
+ NC + utility storage. For a typical F-15 squadron this would be approximately 3500 to 4000
data elements for a full daily schedule with a high availibility count for pilots. For more details

on network algorithms, their structure, and the functions listed above see [13]1(20](28](291(52].

3.2 Test Results

The algorithm created was named PAS. PAS was tested over a series of 5 test problems (see
Table 3.1). These simplified problems were generated from real world data (22]. Test problem
characteristics are listed in Table 3.1. Test problems I and II are *“‘typical’’ daily flying schedules.
Test problem III is a schedule under reduced manning as is common during the holiday season.
Test problem IV is a reduced manning and sortie problem typical of a squadron deployed to a
remote location. Test problem V is a “‘hard’’ schedule with only one feasible solution and a price
structure designed to induce the initial assignments away from the feasible solution. It is thus
designed to show the reliability of the heuristic *‘category’’ solution method and the swap rou-
tine. Test problems VI and VIII are reduced schedules with reduced number of pilot
qualifications. They were designed to allow a comparison with the integer code ZOOM on other
than trivially sized problems. Test problem VII is one such trivially sized problem but nonethe-
less is instructive along with the other problems in showing the increased running times that one

may expect with integer codes as problems get larger.

.48-

TABLE 3.1
Test Problem Structure
=Nm l:teger Formulation

Problem Number | Numberof | Number of || Numberof | Number of

Nodes Arcs Int Var Constraints
PROBLEM I 64 536 542 3727
PROBLEM II 62 527 519 4116
PROBLEM III 55 491 468 3796
PROBLEM IV 21 ! 63 149
PROBLEM V 20 34 28 20
PROBLEM VI 27 101 87 257
PROBLEM VII 19 43 32 18
PROBLEM VIII 31 149 135 495

e -

-49.

Table 3.2 shows comparable run times with the integer package ZOOM/XMP [44). For
each mode! (except problem V) three different data sets were used. B refers to the basic data set
generated from real world data. R1 and R2 were two different data sets which employed ran-
domly generated arc prices. This data was generated using the UNIX "srandom" function. Ran-
dom arc prices were restricted between 0 and 100. All runs were on a Princeton University Vax
11/750 operating under Berkely 4.3 UNIX Operating System. PAS was coded in C and compiled
under the UNIX C compiler. ZOOM/XMP is written in Fortran and was compiled under the
UNIX Fortran 77 Compiler. ZOOM/XMP incorporates a simplex method with a candidate list
pricing strategy to find an initial linear programming (LP) solution to the scheduling problem
with the integer constraints relaxed. If the solution is not integer, a heuristic is used in an attempt
to find an integer solution. If found and within a user specified tolerance the procedure stops else
a branch and bound routine is entered. Details of these procedures are referenced in [44]. For the
test problems the objective function value found from the heuristic presented here was entered as
an incumbent value. ZOOM/XMP terminated when a better or equal solution was found. Thus

ZOOM had three options for an integer solution.
1) Aninteger LP solution.
2) Aninteger heuristic solution or
3) A branch and bound solution.

As shown in Table 3.2, test problem VIII required over 1400 CPU/seconds to find a solu-
tion. Consequently, larger problems were not tested with ZOOM. Three smaller test problems
(test problems V,VI and VII) were also tested with ZOOM. In Table 3.2 the number of pivots,
the number of swaps done to achieve feasibility (Feas Swaps), the initial feasible solution (IFS)

time and objective value (OBJ(1)), the number of swaps made to improve the solution, the final

(FFS) solution time and objective value (OBJ(2)), as well as ZOOM solution times are presented.

b

I

-$0-

TABLE 3.2
Computational Data. All times in CPU seconds.
Prob Simplex | Feas IFS | OBI(1) || Improve | FFS | OBJ(2) || ZOOM* | ZOOM
Pivots | Swaps | Time Swaps | Time Soln Time
I B 598 11 4.66 585 12 7.22 722 NA NA
I R1 424 10 3.67 1984 22 7.61 2473 NA NA
I R2 464 9 4.03 2094 18 113 2404 NA NA
I B 278 1 1.83 566 7 4.05 656 NA NA
II R1 234 1 1.83 1849 11 4.10 2008 NA NA
I R2 289 6 2.50 1910 22 | 594 2276 NA NA
InB 279 5 2.35 699 7 588 763 NA NA
NI R1 346 7 3.95 1702 13 6.40 2033 NA NA
I R2 267 10 2.53 2145 11 4385 2394 NA NA
IV B 54 2 .30 262 2 43 289 HE 64.13
IVR]** 174 1 72 608 2 .80 715 HE 82.7
IVR2** 198 0 .85 604 1 95 648 BB 75.15
\ 87 12 58 12 0 S8 12 LP .63
VI B 35 0 .18 148 0 18 148 BB 526.80
VI R1 42 0 34 738 0 34 738 BB 284.04
VI R2 36 0 .26 846 0 .26 846 BB 1573.23
VII B 22 0 04 182 2 .09 192 LP .85
VIIRI 26 0 09 344 1 12 360 LP 93
VIIR2 26 0 .14 385 1 18 395 LP 98
VIII B 94 4 .61 214 2 .83 223 BB e
VIIIR1 101 3 .66 986 1 .88 1022 BB 1416.95
VIIIR2 98 1 54 1032 2 78 1083 BB o

* NA - Problem not run
HE - Solution found by ZOOM heuristic
LP - All integer LP solution
BB - Solution found by branch and bound

**Problems IVR1 and IVR2 both had infeasible solutions without categorizing. The times above
are for PAS with job categorizing active to enforce feasibility.

Problems VIII B and VIII R2 both terminated after exceeding a 10000 LP iteration limit without
exceeding or matching the incumbent value.

-51-

The solution times of the scheduling algorithm are highly dependent on the structure of the
problem. Problems I - V were intentionally structured "hard” to give a large degree of overlap
between jobs. This was to both validate the swap routine and the basic scheduling logic. Swap-
ping though took only a small portion of total run time (see Table 3.3). For the scheduling algo-
rithm the largest portion of computational time was spent in pricing arcs during the network sim-
plex portion of the algorithm and in attempting to find improved solutions after the network sim-
plex algorithm terminated. Pricing operations occur both before and after the swap routine starts.
Though arcs with a value <~ M were not priced they were scanned to see if their arc prices were
< -M. Pricing after the swap routine is entered could be eliminated all together by using the
swap routine to reassign jobs freed from pilots as a result of the availability of feasible arcs. This
procedure was not followed in anticipation of the swap routine taking longer to execute than it
does and the anticipation that several jobs and arcs would enter into the simplex iteration from

the swap routine (while in fact few do).

As mentioned earlier ZOOM was only run on very restricted size problems due to excessive
memory requirements and run times that grew exponentially on any problem requiring branch
and bound. The ZOOM solution times to problems IV and VI are considerably longer than the
scheduling algorithm. Though the ZOOM heuristic found a good solution to problem IV reason-
ably fast this time is still too long to be practical on a PC. As expected times grow exponentially
under conditions where branch and bound was required to get a solution (see problem VI). As
both problems V and VII had natural LP solutions the ZOOM times were fast but still longer than
the scheduling algorithm. Even so neither of these problems represent realistic schedules in
terms of the number of jobs to be scheduled or more importantly the number of integer variables
(arcs) that normally exist. Interestingly enough is the inverse relationship between the number of

arcs, ZOOM, and the PAS codes. With a large number of arcs the scheduling algorithm is more

likely to find a solution without having to resort to many swap iterations to achieve a feasible

-52.

solution. However, ZOOM works best under conditions where there are few variables (arcs) and

thus few constraints.

3.3 Conclusions

These times show that one can quickly achieve good solutions with the scheduling algo-
rithm. Initial solutions were on average within 9% of the final improved solution in terms of
objective values. However this does not indicate how close the final PAS solution was to the true
optimal solution. The ZOOM routine did give LP solutions to problems V through VIII. This pro-
vided an upper bound as no integer solution can exceed the LP solution. For problems VI and
VIII this upper bound was on average 15% more than the final PAS solution found. Again
though, this is not necessarily indicative of how close the PAS solution was to the true integer
optimal solution. Since the ZOOM code found LP integer solutions to problems V and VIl one
knows the true optimal value in these two cases. In both of these problems the PAS algorithm
also found the optimal solution. However the small size of these problems and the high ratio of
pilots to jobs made the initial solutions to these problems exactly the same or very close to the
LP solution. This will not in general be the case. In the full size problems LII, and III the initial
PAS solution was 10% to 15% worse than the final PAS solution found. Again one does not
know how close the final solution is to the true optimal. Yet how much better the improved solu-
tion is over the basic solution much less how much better the "optimal" solution is to the final
PAS solution is also a subjective judgement. The improvement routine and "optimal” solutions
tend to swap jobs out from low value users and assign them to individuals with high arc prices. A
few individuals are assigned all of the jobs. Though it is true that these individuals with high arc
prices need to fly more than those with low arc prices, there is a point of diminishing marginal
returns. These diminishing returns are not reflected in the formula tions for B;; . A scheduler is

likely to prefer a schedule with individuals assigned one job each rather than one where just a

handful of people are assigned all of the jobs. To counteract this one could, at the expense of

-53.

increased complexity, data storage, and run times, change the B;; between iterations (just as arc
prices are changed to < — M due to infeasibility) to reflect job assignments from previous itera-
tions of the PAS algorithm. By incorporating an appropriate penalty term one may price arcs in
such a way that an individual is unlikely to be scheduled twice. However it is not clear that such
a scheme is desirable either. Some unit schedulers may argue that concentrations of training such
as may occur without a penalty term incorporated into B; are in fact good. This would allow an
individual to build on lessons which are fresh in his mind. In addition those who are not
scheduled have an entire day free without interruption and thus are able to accomplish their ancil-
lary duties efficiently. As the pricing schemes will get updated the following day anyhow, these
individuals will likely fly tomorrow. Thus in the end everyone gets the same number of jobs but
assigned in a more efficient manner (22). This is why an interactive system has been developed.
A scheduler is able to generate a range of solutions quickly and then use his judgement to decide

what is best. These interactive aspects are discussed further in chapter 4.

-54-

TABLE 3.3

Breskdown of Execution Times ;
Prob | Pivot | Price1 | Price2 | Assign | Change | Swap | Improve
1 B 96 .79 141 26 1.12 .10 | 3.80
I Rl .65 .86 .88 22 93 10 | 5.17
I R2 82 .11 98 24 a1 09 | 3.67
II B 41 67 32 12 31 [o 3.32 =
II1 R1 .38 .69 31 .16 30 0 3.30
II R2 43 .58 S1 .19) 07 | 4.47
1l B .53 .67 .29 17 .60 .06 | 4.82
I R1 .66 96 1.25 20 7 08 | 3.62
NI R2 .46 .76 53 19 47 A1 | 335 -
IV B .05 d1 03 02 05 02 22
IV R1 21 13 24 03 02 01 17
IV R2 .10 .59 0 07 02 0 19
v .09 .10 g1 .04 03 .03 .01
VvVl B 09 .08 0 01 0 0 .14 ot
VI R1 .07 11 0 .02 0 0 14
VI R2 .06 .05 0 02 0 0 13
Vi B 03 01 0 0 0 0 07
VIIR1 .05 .04 0 0 0 0 .06
VIIR2 .05 .08 0 01 0 0 07
VIII B .18 .10 14 .05 .09 .03 A4S
VIIIR1 13 25 09 05 12 02 41
VIIIR2 18 14 .08 .05 08 01 45

b ‘ R

-55-

CHAPTER 4

INCORPORATING GOALS AND LONG RANGE USES

Having concentrated up to now on the basic model formulation and how it might be used to
create a daily schedule this chapter links these final results to the beginning inputs. By approach-
ing the problem in this reverse chronological order one can see how the scheduling system will

interact with squadron supervisors and schedulers to aid in squadron training management.

4.1. Incorporating Goals

The model is designed to interact with squadron supervisors to produce a schedule which
best meets stated squadron training goals. Supervisors form these goals based on direction from
higher headquarters (HHQ) and what they perceive as areas to emphasize in training. Goals are
first sent down from the next higher level of supervision, normally wing headquarters. The squa-
dron then sets specific goals designed to meet and enhance these wing goals. Finally each func-
tional area in the squadron emphasizes those squadron goals which their particular functional area

deals with (see Appendix A).

One can put many of these scheduling goals into the daily scheduler. To do so requires care-
ful structuring of the prices of particular pilots performing specific tasks and a basic understand-

ing of how the scheduling algorithm works.

First , as stated earlier, many tasks are directed by Air Force regulations and manuals.
Pilots must accomplish specified levels of events over a 6 month training cycle (see Appendix C).
Many of these events are not scheduled but occur during regularly scheduled missions. VID
(Visual Identification of an ‘‘enemy’’ aircraft) for example can occur on any mission where
meteorological conditions allow. Generally pilots are responsible for accomplishing these events

during their missions. Units receive a computerized listing which shows how many and what

-56-

events each pilot has remaining to accomplish during each 6 month training cycle. Generally
there is no problem in accomplishing these unscheduled events as pilots are daily aware of what

events remain and have enough flexibility during normal missions to accomplish them.

Some events can cause problems. For example, airborne refueling requires an airborne
tanker aircraft which must be coordinated for and scheduled from an outside organization. Given
the difficulty in acquiring such assets, the sorties during which air refueling occurs are generally
scheduled based on the need for air refueling training versus the need for training in the sortie
type. Sometimes however the sortie requires scheduling priority. Selecting one or the other a
priori is difficult since the relative importance of the event versus the sortiec depends not only on
how many events or sortie types are required to fulfill remaining requirements but how many of
the sortie types will be scheduled in the future. In the program developed here the event and the
sortie during which it occurs are combined to form a new and unique job. A pilot must be
qualified to perform both the sortie and the event to qualify for the new job. His price of per-
forming the job becomes the combined weighted price of performing the job and the event. How

the event and sortie are weighted is discussed later.

Another factor affecting price is the currency requirements. For example, pilots are required
to fly at least one air combat training sortie every 30 days. If not, they are considered noncurrent
and thus nonproficient in air combat training. If a pilot is noncurrent he must fly with an instruc-
tor pilot, a limited resource, to regain his currency. Thus a scheduling goal is to not only ensure a

pilot accomplishes the specific number of events but maintains his currency.

In addition one must also consider the actual number of events accomplished. As shown
later a distinction is further made between the number of events accomplished below the levels

directed by regulations and the total number of events accomplished above these levels.

Finally, in addition to the regulation directed requirements, there are usually subjective

requirements imposed by squadron supervisors. These too can be structured as mandatory

oo P

-57-

training requirements, though care must be taken in doing so that actual HHQ directed mandatory
training is not lost. For example a commander must ensure that in upgrading all new pilots to
combat ready status in less than a squadron mandated 45 days that he does not adversely affect
the combat readiness status of his current pilots by preventing them from meeting currencies on

their proficiency training.

4.1.1, Setting Prices

The following is an example of how a commander may input his goals to the scheduling
system. Say event A must be accomplished 6 separate times over the 6 month cycle. One could
represent the price of pilot i doing this event as

B;; = %of events or sorties remaining
for the 6 month training cycle.

One can further modify this price by adding in a training period factor. For example
_ _% events or sorties remaining

"~ % of training period remaining
Call the above term the Pro Rata Factor (PRF) as it represents a prorata training accomplishment

Bij

1

3 of the 6 month training cycle left, with L of the events

measure. For example, if one has 3

L
3

2

remaining this gives a B;; of 1. With 3

of the training cycle and = of the events remaining one

1

has a B, of 2. With

of the events remaining one has B;; =.5. Thus B;; represents deviation

from prorata training accomplishment as a deviation + from 1.0. Once all required events for the
training period are accomplished, PRF is set to zero, as there is no training left to be met in the
training cycle.

One may think of the 6 month training cycle as a currency period in which events must be

completed by 30 Jun or 31 Dec. In addition some events have currencies established by higher

headquarters (HHQ) which may be shorter or longer than the 6 month cycle. Furthermore, squa-

BTN

-58 -

dron supervisors can impose their own currencies more restrictive than those of HHQ. Since all
currencies are not the same and some events are more difficult to accomplish over a short time

frame one can modify B;; to reflect currency weighting by adding the following currency factor.

1
% of Currency Period Remaining

Currency Factor (CF) =

Thus B;; becomes

B; = PRF+CF

Note the currency period is updated each time an event is accomplished. If there is no
specified currency period the currency period is set equal to the training period and remains equal
to the percentage of the training period remaining throughout the training cycle. As the above
denominator term goes to zero B;; is set to M (recall B;; is a price thus it is actually -M in the
code). This will ensure a pilot is scheduled as soon as possible if he becomes noncurrent in an

event.

One should also include a factor which captures how recently a pilot flew. Note this is
somewhat different than percentage of currency period remaining in that it is a measure of how
long it has been since a pilot flew rather than how long he has remaining to accomplish a specific
event. For example, assume Pilots 1 and 2 both must accomplish an event with no currency
specified but with a training period set as a maximum of 45 days. Pilot 1 last fiew 5 days ago and
Pilot 2 last flew 10 days ago. Both pilots have accomplished 50% of training required and have
44% (20 days) of their training period remaining. Under the original formulation

Bij -PRF+ CF

which gives us

B, = .50/44+1/.44~33

for both pilots 1 and 2. However most manual schedulers would fly pilot 2 first since he has not

flown for the longer period of time. Thus a recency factor (RF) is added where

o
.

ot

N

-59-

RF = # events req » # days since last flown
days in training period

Finally one should also address the question of total event accomplishment beyond the

number required during the training period. Thus a third factor is added to reflect total event ;’;:i
Lo
accomplishment L7
=
Event Factor (EF) % ;
vent Factor (E) = ¥ of events accomplished — # of events required .
. : o 100 , 3
where Z; is a scaling factor for job j. Forthe F-15TFSaZ; = ¥ of events required is used as the “

highest number of events required for any event is approximately 100. Thus Z; represents a nor-

mative weighting for a particular event j. If the number of events accomplished < events -

required EF = 0. This gives us a final B;; of

=
B;; = PRF + CF + RF + EF "
where y;
%oevensRem __ wrppgo
% training period rem ot
PRF = 0 otherwise S
st
- 1
% currency period rem I

RF= # events req « # days since last flown
days in training period

100 1

EF = # events req ’ # events accomplished — # eventsreq if # events acc > #events req'd
0 otherwise ’ .

-

s

. 5 ' n Y ; Ya . RESADALNI gy ATt
DOOMALOLIDUOLOU O ON OO OO PN SEMAR AR ATl
R U SR A R R . o . . <

4.2. Determining Sortie Types

As mentioned in the introduction squadrons have relatively little control over number of
flying hours and sorties flown. However, they can affect what type of sorties are flown. Here the
flexibility of the transportation model proves useful. On average a pilot performs 7-8 scheduled
jobs a week of which 3-5 are flying sorties [22]. In aggregate squadrons typically fly around 24
sorties a day. Using this information one can quickly produce a list of what flying jobs would best
benefit squadron needs for the coming week. One starts by entering all jobs with a known
demand level. For example certain jobs may be scheduled to occur weeks or months in advance.
Thus their actual demand levels are known weeks or months in advance. Using the above infor-

mation one may formulate the sortie prediction problem into a transhipment network as follows.

FIGURE 4.1. Long Range Sortie Projection: A Transhipment Problem

"

(4

-61-

A link connects all actual job nodes to a "daily sink". The daily sink demand level is set to

D* - ¥D of all jobs, where D’ is the average number of flying sorties a day (eg 24). The

demand levels for each job are 0 unless a specific demand level is known for a given job on a
given day. The original sink remains to absorb excess pilot supply (in this formulation supply
always exceeds demand). One solves this transhipment problem and gets a prediction of the
"best" D* sorties for any given day. Note that only one transhipment problem need be solved per
day as there is no swapping or improvement routine. A similar procedure could be used for
ground jobs. After each daily run pilot prices are updated based on the sortie predictions. Then
the next day’s prediction can be run as described above. Thus i week’s aggregate sortie predic-
tion entails the solution of 5 small transhipment problems. One may continue this procedure as
long as desired. As pilot qualifications and availability changes, however, these projections
become less accurate. A reasonable period of time is two weeks based on the author’s practical
experience. As mentioned previously the scheduling environment in tbe TFS is quite dynamic.
Even for aggregate sortie projections, predictions beyond two weeks tend to be so fraught with
error as to have little use. Armed with this aggregate listing of future job requirements squadron

schedules could then request an intelligent sortie mix from the wing schedulers.

The wing (the next level of supervision above the squadron) takes these sortie requests and
assigns aircraft specific areas to operate in. In addition they dictate aircraft takeoff times to coin-
cide with the times the airborne operating areas are to be used. Wing scheduling also coordinates
outside assets which are used in the support of local training. After the wihg scheduling shell (a
spreadsheet listing operating areas, mission (job) types, and takeoff times) is produced it is fed
back down to the squadrons who then assign pilots to this scheduling shell as described in Section
2. Thus one has moved beyond the daily scheduler to an aid which helps determine schedules

weeks in advance. Note however that scheduling the system has gained more generality as the

time horizon expands. One is not scheduling specific pilots against specific jobs but only

-62-

predicting in aggregate numbers what types of flying sorties would be best for the squadron.

43. Creating Job Types

By again increasing the generality one can extend the time hﬁrimn of the model even
further, to not only predict how many of what type jobs one needs to schedule, but to predict what
type of jobs one needs to create. To understand this concept recall that in the daily scheduling
model pilot qualifications and availability are input to schedule pilots into specific job demands.

Availability is then updated and the process repeated until all jobs are filled.

Similarly, prior to the start of a 6 month training cycle, one can input long range availability
of pilots. Inputs affecting this include projected arrivals and departures, projected leaves (vaca-
tions), and projected TDY's (temporary duty away from the home station -- nonflying). From this
one can create an availability roster. In fact, this is done within the scheduling program on a
daily basis. As pilots are assigned jobs they are marked non-available during the time periods the
job occurs. In addition manual inputs can be made to the availability roster such as when a pilot
cannot fly due to illness or a pilot’s request for personal time off. Current pilot qualifications of
pilots should also be entered. This is easily available through a *‘letter of Xs’’. A letter of Xs is
literally that, a table with a big X in rows marked by a pilot’s name under a column whose head-
ing is a job that pilot is qualified to perform. This listing is maintained in all TFSs. (see Appen-
dix D)

In addition supervisors normally specify the ratio of specialized qualifications they wish to
maintain in their squadrons. For example, 2 commander may wish for 50% of all pilots to be
flight lead qualified, 25% instructor pilot (IP) qualified, etc. Based on current qualifications and
such desired manning ratios, the supervisor is then presented with an overage or underage of cer-
tain qualifications in future months based on projected personnel changes. An underage becomes
a demand for a new job. For example, if due to departures, a squadron is going to be short two

IPs in October a demand is created for two IP upgrade programs with a completion date of

P g e o

-63-

October. Previous input from the Supervisor tells the long range scheduler that an IP upgrade
should take no longer than, for example, 60 days Therefore the long range scheduler creates a
demand for two IP upgrade ‘‘jobs’’ starting 1 August. This information is returned to the super-
visor who then decides who will enter upgrade training on those dates (though one could program
the model to assign pilots to such jobs, much subjective evaluation goes into selecting such pilots
thus actual assignments are better left for the supervisor to determine). Since upgrade training
draws away sorties from daily training (concentrating them in the IPs who conduct upgrade train-
ing) it is desirable to ‘‘smooth’’ out upgrade training and avoid concentrations. These concentra-
tions occur naturally as old pilots leave and new pilots arrive on a yearly cycle with especially
large concentrations every three years (these cycles are due to personnel rotating policies). Thus
one needs a long enough time horizon to foresee these ‘‘humps’’ and a programmed logic to
spread projected upgrade training throughout the year. A one year time horizon should prove
adequate for these purposes. With these new jobs created they are fed to the short range
scheduler which produces the squadron job projections sent to the wing. Thus these new jobs
show up on the scheduling shell from the wing. Then the daily scheduler assigns pilots to these

jobs.

4.4. Other Uses for the Long Range Scheduler

One could also include projected squadron deployments in the long range scheduler. Most
TFSs deploy half or all of the squadron 2-4 times a year to another base to participate in military
exercises or familiarize themselves with contingency operating areas. Generally participation in
these exercises is tracked as any other job, thus the transportation model can be used to recom-
mend assignment to these exercises based on projected availability and past participation (if any).
A common problem when only part of a squadron deploys on such exercises is that an inadequate

mix of pilots remain to accomplish daily traininé at the home base. By specifying a particular

mix of pilots and their qualifications required for these deployments and for homebase training

-64- -

(i.e. by specifying what jobs to fill) one can get a fairly good idea who will deploy and who will

not.

This again leads to another advantage of placing the model on a PC. Squadrons can deploy
fheir PC with them. Thus training accomplishment and scheduling can be accomplished at the
remote site as at the home base. One disadvantage will be the general impracticability of tying in T
to the mainframe computers located at home bases over telephone lines for retrieval of the data
necessary to track currencies and job accomplishments. One could circumvent these problems by
performing a database update just prior to deployment. Since most deployments do not last more -
“f than 30 days the scheduling irregularities generated at the deployment site due to an inaccurate

I data base should be minimal. If direct database updates were desired one could tie in by modem

[]

to the mainframe computer located at most home bases for a daily update of job accomplishments

&
- -

and currencies. This can be done via the military AUTOVON network (similar to commercial

r
o

T
« Ty o -
= -

WATS lines) even from overseas locations. Again, however, this system would not be reliable.
The AUTOVON system is especially "noisy” and subject to sudden preemption from higher

priority calls.

4.5. Interactive Aspects

Many of the interactive aspects of the acheduling and training management system have

: been previously discussed. In this section the interactive role of the human in the loop is
enhanced to both show the advantages and disadvantages of the scheduling system.

The first interactive role involves establishing the price structure which will reflect the train-

ing goals of the squadron. Again careful considerations must be given to ways in which price

¢ structures will interact with each other in bringing about scheduling tradeoffs. As shown before

. (see section 2.4.1) one can develop graphs to aid supervisors in the selection of the appropriate

parameters. However such graphs will have a limited benefit. One can only show the interaction -

5 of a limited number of parameters while many exist. Studies have shown that individuals are

-65-

usually saturated with more than 5-7 decision variables to decide among. In addition one risks so
engrossing the model in complexity that the users cannot understand it and subsequently are
reluctant to use it. The price structure described in Section 4.1.1 is a compromise between too
much versus too little complexity. Asymmetries will likely occur. To allow the user to “‘fine
tune’’ his system one may adjust the price structure by inputting user selected parameters. How-
ever in the final analysis one is likely to discover a moving target, one which, regardless of the
final price structuring used, faces the very real potential of producing a solution in which a human
can intervene and produce superior results in just a few seconds. This model does not seek to
eliminate such possibilities. The human must be involved to make it work. This interactive role

extends beyond simply defining price structures and reliance on regulation directed event levels.

Referring again to the long range uses of the system, supervisors must ensure that their
desired manning ratios and personnel mix on deployments actually reflect realistic goals. This in
tum influences the determination of certain job creations. Once jobs are created they should be
filled or the situation which led to their creation will be left unresolved. This in tum may create
future training and scheduling situations which cannot be met by available resources. In short,
the users must understand the system, the logic of its results, and once understanding this logic,
implement the results or change the logic. This logic will not be static. Goals and personal taste
will change both with time and new leadership. Thus this model is structured with the anticipa-
tion of continuous review and a relative ease to change parameters to meet these changes and

respond to inadequate results.

The second area of interaction occurs with data entry. Obviously incorrect or inaccurate
data produces poor results. This system has been produced with available data systems in mind
to minimize additional data requirements above those that presently exist (which is not to say that
present data tracking is either adequate or excessive). Inputs are necessary for both long and

short range uses. None of these inputs are beyond present day requirements. The one area of

e e e o

-66-

change is the requirement for some inputs to be entered into a computer versus an entry onto a
piece of paper.

With the data and squadron level supervisor inputs the long range scheduler produces an
aggregate sortie prediction for some specified time frame. This listing will predict the seven or
eight jobs for a pilot (in the given example) for the coming week. However this prediction is not
fixed. Flight commanders (the first level of supervision within the squadron) should be queried
on a weekly basis about any inputs they have for schedulers. Flight commanders in tum then ask,
or should ask, their subordinates about what areas of training they wish to emphasize. In fact
such a system is currently in force in most TFSs as schedulers seek flight commander inputs
weekly to aid in the scheduling of their flight assigned personnel [22]. With flight commander
inputs the aggregate sortie prediction is further refined by the schedulers to reflect real world
scheduling limitations and opportunities such as the availability of outside assets to support train-
ing. After squadron supervisor approval, this aggregate sortie prediction is then forwarded to the
wing, where, as described earlier, a scheduling shell is created which is then passed back to the

squadrons.

With the shell and an updated list of pilot availability and job qualifications the scheduler is
ready to assign individuals to jobs. First, manual scheduling inputs are made. One does not
allow the wing commander to be scheduled by the, though logical, apparently random process of
an optimizer. Such individuals generally tell schedulers where and when they will fly. Other rea-
sons exist for making such manual inputs. For example, supervisors may insist that two individu-
als fly together while the pricing process described earlier only increased the possibility of two
individuals flying together. Such scheduling inputs can be made by fixing variables at a certain
level. Essentially this entails making these pilots unavailable during the time the job they are

assigned occurs, the elimination of the assigned job from the job list, and an appropriate

modification of the pilot’s B; for that particular job type. Thus, while the job assignment prints

ok

I ¥

e

-67-

out with the other jobs in the solution report it never actually is ‘‘assigned’’ by the algorithm.
With fixed inputs the remaining schedule is run much as described earlier under the daily

scheduler algorithm.

When an initial feasible solution is found or no more feasible arcs for remaining jobs exist
the solution prints out. In most cases such a solution will be acceptable or, if infeasible, easily
modified by manually relaxing constraints to remove infeasibilities. If so the scheduler ter-
minates the algorithm which has either proceeded on into the swap routine, (if the initial solution
is infeasible) , or into the improvement routine. With each improved feasible solution the solu-
tion is presented. Again the scheduler can terminate the algorithm at any time or continue on until

the algorithm terminates under its own logic as described earlier.

These results are then passed on to the squadron supervisor for final approval. Should the
scheduler or squadron supervisor wish to make changes they can do so manually or with the algo-
rithm. One can swap a pilot out of or into a job with the swap routine. If possible the swap rou-
tine runs until a feasible solution is found or termination criteria is met. With the final results the
solution is posted and the availability file updated in anticipation of the next days scheduling
input.

As the day goes on scheduling changes may occur. Again the algorithm allows locking in
variables which have not changed and reoptimizing the rest or conducting individual swaps. The
procedure should be fast enough where schedulers can produce complete daily schedules quickly

on a PC computer.

Again note the high level of user interface. This not only allows greater flexibility but the

ability to avoid greater complexity in the model structure while still providing good results in a

short period of time.

H

-68 -

4.6. Scheduling System Summary and Uses

To summarize the planning and scheduling system:

1. Inputs are gathered prior to start of the 6 month training cycle but include personnel projec-
tions up to one year in the future. These inputs should be updated monthly thus once ini-
tiated the long range scheduler acts constantly. Inputs include:

A. Projected departure and arrival of pilots

B. Projected TDY's

C. Projected leaves

D. Desired manning ratios

E. Contingency tasking manning requirements

F. Squadron established currencies

G. Squadron established length of upgrade training

H. Squadron specified sortie mix requirements

1. Job weights and scaling in accordance with stated goals

J. Dates of projected deployments and manning structure for deployments
2. With these inputs the long range scheduler returns:

A. When pilots should enter upgrade training and how many
B. Projected manning ratios and deviation from goals
C. Joint leave, TDY, and recommended deployment schedule

4 D. Contingency manning levels incorporating projected upgrades

3. Squadron supervisors review this projection and:

A. Select pilots for upgrade training

B. Alter TDY leave schedules to avoid problems with required contingency manning

-69 -
C. Make tcntaiive selection of pilots for deployments
D. Establish pilot pairings if desired -

4. This information is fed to the short range scheduler which projects aggregate sortie mix one

week to a month in advance.

=
5. This information is relayed to the wing. The wing combines the squadron’s inputs and
schedules range air space, and mission types producing a scheduling shell.
6. This shell is passed back to the squadron where the schedulers
A. Manually schedule pilots with nonprogrammed specific requirements
B. Update nonavailability request from individual pilots
7. With this information the daily scheduler B
A. Inputs the daily update of pilot qualifications, pilot availability, and the jobs to fill
from the wing shell
B. Writes a daily schedule
8. All levels feed back information required to update long, short, and daily schedulers input i
L
v

4 t ALY
AN 'u‘n‘a“,‘v\ ?" ,f’z‘\’?.‘_;"'.‘v':lp'i.‘\“‘@ l’;" o !

-70-

SUMMARY AND CONCLUSIONS

The advancements in modern aircraft technology have dramatically increased the capability
of these aircraft as well as the degree and complexity of the training required for the
crewmembers who fly them. During the last 20 years most tactical aircraft have also changed
from two seat (two crewmembers) to single seat (one crewmember) aircraft. These factors have
combined to create a tremendous burden for crewmembers to accomplish and for squadrons, with
their restricted manning, to manually schedule. This paper has outlined a training management
system which appears promising in aiding Tactical Fighter Squadrons in the scheduling and
management of required daily training.

By formulating the scheduling problem as a transportation network, one is able to take
advantage of the speed and efficiency of a primal network simplex algorithm in assigning pilots
to jobs. The nature of the daily scheduling problem generally allows the presentation of good
results very quickly. However the procedure has the robustness to resolve initial infeasibilities
and provide the user with increasing objective value alternative solutions. This procedure contin-
ues until the algorithm reaches its own termination criteria, the user stops the problem because of

the acceptability of the current solution, or time constraints are met.

A key feature of the scheduling system is the ability of unit schedulers and supervisors to
interact at several levels of the scheduling process. Given the complexity of scheduling training
it is doubtful that all appropriate constraints can be modeled. Thus this interaction is & necessity
to ensure that scheduling and training goals as well as a degree of flexibility is reflected in the

scheduling process.

The training management and scheduling system described offers the potential for

improved training in a typical TFS. Further research is needed in determining a good measure of

how close the objective function is to an optimal value and then guiding the algorithm towards

-71- -,

&

the optimal within reasonable run times. Along this vein, more advanced improvement pro- e

cedures such as K-opt methods may prove promising in providing higher objective value solu- X

% tions within reasonable run times [39]). Given the highly degenerate nature of the solutions to the s

transportation problems a primal-dual network algorithm may be more efficient than the primal ~
method employed here [40]. In addition, more research is required into integer based algorithms
- which give quick suboptimal solutions to see if the assumptions are true that such codes would be
too slow and too complex to run on a PC. Also other heuristics exist which may work well for
this particular problem [7][27]. Finally this model is based on deterministic inputs. The possibil-
ity exist for significant distortions in the daily schedules due to a lack of adequate accounting of
; future requirements though the arc price structures do to a degree take into account future effects.
However more research can be done to investigate the possibilty of trying to develop a stochastic ey
system without unduly complicating the scheduling algorithm or increasing its run times beyond 'u',:
the feasible threshold for a PC.

v Actual implementation of this heuristic on a PC in a production environment requires
N further enhancements in software to provide a greater degree of user friendliness and efficiency. e
In addition interfacing between the data base on USAF mainframe computers and squadron PCs -
requires further development. Actual implementation also requires more face to face interaction ey
between the developers of the model, squadron scheduler’s, and supervisors to resolve conflicts o

and inaccuracies.

To date results have been encouraging both in the quality of the solution and the speed in
which it is found. As of the writing of this paper there are commercial contractors who have
approached the Air Force to develop a scheduling system though lack of published material and
proprietary concerns prevents a direct comparison. Yet this is indicative of the interest and the
probability that someday soon USAF squadrons will operate under some form of computer =

assisted scheduling and training management. v
b
)

RAAOSOO0
JOR ML I M)

. -
SOOI UO) 7 (OO Mo M
Ittt e T e

-

- e - -

LR AL

-72-

REFERENCES

Baker, E., Bodin, L., Finnegan, W., and Ponder, R., ‘‘Efficient Heuristic Solutions to an

Airline Crew Scheduling Problem’’, A/IE Transactions, Vol. 11, (1979), pp. 79-85.

Balachandran,V. ‘‘An Integer Generalized Transportation Model for Optimal Job Assign-

ment in Computer Networks’’, Operations Research, Vol.24, (1976), pp 742-759.

Balas, E., and Ho, A.,‘‘Set Covering Algorithms Using Cutting Planes, Heuristics, and
Subgradient Optimization: A Computational Study’’, Mathematical Programming Study,

12, (1980), pp. 37-60.

Balas, E. and M. W, Padberg, ‘‘Set Partitioning’’ in Combinational Programming: Methods

and Applications, B.V.Roy (ed.), D. Reidel Publishing Co., 1975.

Balas, E., and Padberg, M., ‘‘Set Partitioning: A Survey’’, SIAM Review, Vol. 18, (1976),

pp. 710-760.

Ball, M., Bodin, L., and Dial, R., ‘‘A Matching Based Heuristic for Scheduling Mass Tran-

sit Crews and Vehicles’’, Transportation Science, Vol. 17, (1983), pp. 4-31.

Ball, M., and Roberts, A., ‘A Graph Partitioning Approach to Airline Crew Scheduling’’,

Transportation Science, Vol. 19, (1985), pp. 107-126.

Bloomfield, S.D., and McSharry, M.M., “‘Preferential Course Scheduling’’, Interface, Vol.

9, (1979), pp. 24-31.

o

W ICK D
ey B

~ ol
e -

10.

11

12.

13

14.

15.

16.

-13.

Bodin, L., Golden, B., Assad, A., and Ball, M., ‘‘Routing and Scheduling of Vehicles and
Crews -- The State of the Art’’, Computers and Operations Research, Vol. 10, (1983), pp.

63-210.

Bodin, L., and Golden, B., ‘‘Classification in Vehicle Routing and Scheduling’’, Networks,

Vol. 11, (1981), pp. 97-108.

Bradley,S.P., Hax, A.C., and Magnanti, T.L., Applied Mathematical Programming,

Addison Wesley Publishing Co., 1977.

Charnes, A., Glover, F., Kamey, D., Klingman, D. and Stutz, J., ‘‘Past, Present, and Future
Development, Computational Efficiency and Practical Use of Large Scale Transportation
and Transshipment Computer Codes’’,Computers and Operations Research, Vol 2, (1975),

pp. 71-81.

Chvatal, V., Linear Programming, W.H.Freeman and Co., 1983.

Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Schedul-

ing, A. Wren (ed), North-Holland Publishing Co., 1981.

Comuejols, G., Fisher, M., and Nemhauser, G., ‘‘Location of Bank Accounts to Optimize
Float: An Analytic Study of Exact and Approximate Algorithms’’, Management Science,

Vol. 23, (1977), pp. 789-810.

Dantzig, G., and Fulkerson, D., ‘‘Minimizing the Number of Tankers to Meet a Fixed

Schedule’’, Naval Reserve Logistics Quarterly, Vol. 1, (1954), pp. 217-222.

DeGans, O, ‘A Computer Timetabling System for Secondary Schools in the Netherlands’’,

P‘

RN

18.

19.

20.

21.

22,

23.

25.

26.

.74.-

European Journal of Operational Research, Vol. 7, pp. 175-182.

Derigs, U., ‘‘A Shortest Augmenting Path Method for Solving Minimal Perfect Matching

Problems’’, Networks, Vol. 4, (1981), pp. 379-390.

DeWerra, D., ‘‘An Introduction to Timetabling’’, European Journal of Operational

Research, Vol. 9, pp. 151-162.

Dial, R., Glover, F., Kamey, D., and Klingman, D., ‘‘A Computational Analysis of Alterna-
tive Algorithms and Labeling Techniques for Finding Shortest Path Trees", Networks, Vol.

9, (1979), pp. 215-248.

Dyer, J. and Mulvey, J, ‘* An Integrated Optimization/Information System for Academic

Departmental Planning’’, Management Science, Vol. 22, (1976), pp. 1332-1341.

Feest, G. Capt., Noted in Conversation, Langley AFB, Virginia, July 1986.

Fisher, M., ‘‘The Lagrangian Relaxation Method for Solving Integer Programming Prob-

lems’’, Management Science, Vol. 27, (1981).

Fisher, M., “‘Optimal Solution of Scheduling Problems Using Lagrange Multipliers; Part

I'’, Operations Research, Vol. 21 (1973), pp. 1114-1127.

Fisher, M., *‘Worst Case Analysis of Heuristic Algorithms’’, Management Science, Vol. 26,

(1980, pp. 1-17.

Geoffrion, A., ‘‘Lagrangian Relaxation for Integer Programming’’, Mathematical Program-

ming Study, Vol. 2, (1974), pp. 82-114.

“ e o

#

P

-75-

27. Glassey, R., and Mizrach, M., ‘‘A Decision Support System for Assigning Classes to

Rooms”’, Interfaces, Vol. 16, (1986), pp. 92-100.

28. Glover, F., Karney, D., Klingman, D., and A. Napier, ‘‘A Computational Study on Start
Procedures Basis Change Criteria, and Solution Algorithms for Transportation

Problems’’ , Management Science, Vol.20, (1974), pp. 793-813.

29. Glover, F., Kamey, D., and Klingman, D,, ‘‘Implementation and Computational Swdy on

Start Procedures and Basis Change Criteria for a Primal Network Code’’, Networks, Vol.4,

(1974), pp. 191-212.

30. Glover, F., Kamey, D. and Klingman, D., ‘‘Improved Computer Based Planning

Techniques- Part 2, Interfaces, Vol. 9, (1979), pp. 12-20.

31. Glover, F., Hultz, J., Klingman, D., and Stutz, J., *‘Generalized Networks: A Fundamental

Computer Based Planning Tool’’, Management Science, Vol. 24, (1978), pp.1209-1219.

32. Glover, F., and Mulvey, J., ‘‘Equivalence of the 0-1 Integer Programming Problem to

Discrete , Generalized, and Pure Networks’’, Operations Research, Vol.28, Part 11, (1980).

33. Golden. B., and Magnanti, T.L., Neswork Optimization, Draft 1984.

34. Held, M. and Karp, R. *“The Traveling Salesman Problem and Minimal Spanning Trees’’,

Operations Research, Vol.18, (1970), pp. 1138-1162.

35. Holloran, T.J. and Bym, J., *‘United Airlines Station Manpower Planning System”’, Inter-

faces, Vol. 16, (1986), pp. 1-9.

-

4
*

36.

37.

38.

39.

40.

41.

42,

43,

44

-76-

Knauer, B., *‘Solution of a Timetable Problem’’, Computers and Operations Research, Vol.

1, (1974), pp. 363-375.

Lenstra, J., and Rinnoy, A., *‘Complexity of Vehicle Routing and Scheduling Problems’’,

Networks, Vol. 11, (1981), pp. 221-227.

Lin, S., ‘‘Heuristic Programming as an Aid to Network Design’’, Networks, Vol. §, (1975),

pp. 33-44.

Lin, S., and Kemighan, B., ‘‘An Effective Heuristic Algorithm for the Traveling Salesman

Problem’’, Operations Research, Vol. 21, (1973), pp. 498-516.

Luenberger. D.G., Linear and Nonlinear Programming, Addison- Wesley Publishing Co.,

1984,

Marsten R., ‘‘An Algorithm for Large Set Partitioning Problems’’, Management Science,

Vo1.20, (1974), pp. 774-787.

Marsten, R., Muller, M., and Killian C., ‘‘Crew Planning at Flying Tiger: A Successful
Application of Integer Programming’’, Management Science, Vol. 25, (1979), pp. 1175-

1183.

Marsten, R., and Shepardson, F., ‘‘Exact Solution of Crew Scheduling Problems Using the
Set Partitioning Model: Recent Successful Applications’’, Networks, Vol. 11, (1981), pp.

167-177.

Marsten, R., User’s Manual for ZOOM/XMP, Department of Management Information Sys-

tems, University of Arizona, November 1984,

b

i1

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

-77-

Mitra, G. and Welsh, A., *‘A Computer Based Crew Scheduling System Using a Mathemat-

ical Programming Approach’’, in reference [14].

Mulvey, J., ‘‘A Classroom/Time Assignment Model’’, European Journal of Operational

Research, Vol, 9, (1982), pp. 64-70.

Mulvey, J., ‘‘Strategies in Modeling: A Personnel Scheduling Example’’, Interfaces, Vol.9,

(1979), pp. 66-77.

Mulvey, J., ‘‘Pivot Strategies for Primal-Simplex Network Codes’’, J. ACM, Vol.

25,(1978), pp. 266-270.

Nemhauser, G., Wolsey, L., and Fisher, M., ‘‘An Analysis of Approximation for Maximiz-

ing Submodular Set Functions’’, Mathematical Programming, 14, (1978), pp. 265-294.

Ross, G.T., and Soland, R., ‘A Branch and Bound Algorithm for Generalized Assignment

Problems’’, Mathematical Programming Swudy, Vol. 8, (1975), pp. 1-103.

Parker, M., and Smith, B., **Two Approaches to Computer Crew Scheduling’’, in reference

(14].

Powell, W., Lecture Notes: Network Algorithms and Applications, 1986.

Ryan, D., and Foster, B., **An Integer Programming Approach to Scheduling’’, in reference

[14).

Smith, B., and Wren, A, “VAMPIRES and TASC: Two Successfully Applied Bus

Scheduling Programs’’, in reference [14].

P

5S.

56.

57.

58.

-78 -

Srinvasan V. and Thompson, G., ‘‘Benefit Cost Analysis of Coding Techniques for the Pri-

mal Transportation Algorithm*’, J. ACM, Vol.20,(1973), pp. 194-213.
Tactical Air Command Manual 51-50, Aircrew Training ,1986.

Tripathy, A., ‘‘School Timetabling - A Case in Large Binary Integer Linear Programing’’,

Management Science, Vol.30, (1984),pp. 1473-1489.

Ward, R., Durant, P., and Hallman, B., ‘‘A Problem Decomposition Approach to Schedul-

ing the Drivers and Crews of Mass Transit Systems’’, in reference 14.

APPENDIX A

Typical TFS Goals

TFS

1986 GOALS

MISSION

TFW/DO Goal: Improve TFW capability to deploy and fight worldwide

TFS Objectives:
(1) Fly mixed force (F-15/F-16) training during at least one Aggressor visit.

(2) Deploy every Mission Ready/Mission Support squadron pilot and every squadron
enlisted member on at least one composite force exercise.

(3) Develop quarterly training scenarios for all Oplan-tasked TFS deployment bases.

(4) Fly the FY86 Flying Hour Program out to zero hours/sorties.

TFW/DO Goal: improve local DACT and training realism.
TFS Objectives:

(1) Fly at least 60% of all squadron ACBT sorties against dissimilar opposition (MQT sor-
ties excluded).

(2) Provide coordinated (DOW, IN, DOT, DOX) air tasking orders for an average of at
least one mission (two- or four-ship flight) per local training day.

A-2

Yo

PEOPLE

TFW/DO Goal: Enhance airmanship.
TFS Objectives:
(1) Average less than 45 days for MR upgrade of newly-assigned RTU graduates.

(2) Review pilots for upgrade to flight lead and instructor pilot as soon as they meet
minimum criteria. Select those best qualified.

(3) Schedule one ‘‘down’’ Friday per month for ATWATS, Flight Lead seminars, etc.

TFW/DO Goal: Take care of people, their families, and their environment.

T T T .

TFS Objectives:

H

(1) Schedule maximum crew duty day of ten hours concurrent with two-go days, except for
sortie surges.

e e rﬂ

2 (2) Reward outstanding performance by flying maximum supportable maintenance appreci-
' ation sorties (average 3/month).

(3) Encourage PME/Off-Duty education participation by accommodating class schedules to
the maximum extent possible.

-

10.

11.

12

TFS SCHEDULING 1986 GOALS
Fly the FY86 Flying Hour Program to zero hours/sorties.
Fly at least 60% of continuation ACBT sorties against dissimilar adversaries.

Provide the Training Shop with an average of at least one mission (two or four shop) for air
tasking orders per local training day.

Maintain our current positive Eagle Elite sortie position so as to continuously be permitted
to fly an average of at least 3 Maintenance Appreciation sorties per month to enhance
TFS/AMU relations.

Strengthen TFS/GCI interface by flying a minimum of one GCI controller per month ina D
model on an ACTT/DACT sortie.

Complete all Stan/Eval checkrides before the fifth month. Complete all prerequisites prior
to the end of the third month.

Complete all MQT training within an average of less than 45 days.

Manage the annual Flying Hour Program to schedule one ‘‘Down Day’’ on one Friday per
month for ground training and commander directed meetings.

Maximize the use of the two go schedule, IAW TAC goal, while maintaining a maximum
crew duty day of ten hours.

Encourage PME/Off-Duty education participation by accommodating class schedules to the
maximum extent possible.

Efficiently schedule resources to attain GCC level B for 75% of MR pilots.

Incorporate squadron small computer resources into the schedule planning process.

A-4

APPENDIX B

Scheduling Checklist

N

DUTY SCHEDULER/OPS SUPERVISOR

The Day Prior:

1.

Receive a hand-off briefing from the current duty scheduler concerning the next days
schedule and any pertinent considerations to include priorities and scheduling rationale.

Contact the Base Weather Forecaster and obtain the forecast for the next flying day.

On the basis of this information, determine the need for back-up scheduling plans to
include:

a. WX Category Changes.
b. Mission Changes.

c. Range Space Changes.

d. Configuration Changes.

e. Possible WX adding to the PM Schedule.

If the probability of adverse WX, or other extraneous inputs (i.e., VIP's, or exercise) is
high, identify primary back-up pilots and notify these individuals of your plans.

Take the schedule and availability sheets home with you. If the need arises, you will be
called.

The Day Of:

1.

2.

Call WX before you leave home -- you may need a head start.
Arrive NLT 15 minutes prior to the first briefing.

Call the AMU and confirm the following:

a. Configurations.

b. Tub Lines.

¢. Number of Spares (A/A and A/G)
d. ICT Lines.

e. VIP.'s

If the configurations are not right or other difficulties are encountered, note it in the Green
Record Book so it can be followed up.

Take the previous day’s schedule and transfer all the sorties flown to the weekly summary
so we have a running goal for the week for each pilot. Then take the schedule and file on
Chief of Scheduling desk.

B-2

2

| -

g

i

L]

!
I'S

Review the Ops Scheduling Board for all Upgrade sorties flown and ensure that Training
has updated the Training board. Note any discrepancies and give to Chief of Scheduling.

As changes to airspace, takeoff times, etc., occur to future days schedules ensure that the
changes are recorded on the grease board and the MATS and the Wing Printed schedule (if
it is available). All of these sources must be identical.

Standby to work the daily fires that occur (Personnel changes, Airspace changes, and
Management decisions (Go/No Go, Pit, ICT, etc.)

NOTE: Let the Ops Specialists do their jobs unless you are not getting results fast enough.
If you need higher level guidance talk to the P Sup.

Start working the next days schedule once today’s situation is in hand and you have com-
pleted the above tasks. The best time to get started is early in the morning prior to outside
agencies calling us about their screw ups. Remember the systematic approach will get you
to the finished product earlier, and that gathering all the information to build the schedule,
prior to just throwing names at the schedule, will get you a quality product sooner. Use the
following steps to ensure all scheduling factors have been considered.

Make a copy of the next day's schedule from the Wing printed schedule (If it is available --
usually after Monday) or the handwritten MATS if Wing printed is not available.

Get a blank copy of the ground activities sheet (lists P Sup, Duty Sch, SOF/RSO, RTO,
Simulators, and Meetings). List the requirements for the duties by the applicable time
period without listing the names to fill these requirements. Get all the meetings that are
printed on the large calendar on the wall, as well as the regularly scheduled meetings, which
should already be printed on the schedule board.

Get a blank deconfliction sheet and list all the Leave/TDY's (Leave/TDY information is
posted next to the schedule boards).

Review the schedule book for the applicable week for any extra requirements (VIP Flights,
Eagle Elites, Higher Hq Flyers, Statics/Flybys).

Review the Flight CC scheduling inputs and attempt to incorporate their inputs according to
the priority listed.

Review Life Support requirements sheet and the Calendar of Training dates. Schedule as
many of these requirements as the schedule will allow.

Start building the schedule by first listing the hard ground requirements and then fill in the
flying schedule by using formed elements when able.

Fill in the deconfliction sheet as you build the schedule step by step. This will help to make
changes to the work as you change the schedule or someone comes in with a new input.
Subsequent supervisor review and the changes which may result can also be handled much

B-3

OO0 DGO
: .1‘551‘va!“l’.»‘"""‘b:‘l’

-

PP

o
i1
LA

-

-..,.'

faster. If the deconfliction sheet is not accurate you will screw the next day’s duty
scheduler who may need to make a quick change to the schedule.

If it is Tuesday attend to 0930 Mx/scheduling Meeting held at the DCM Conference Room.
Bring the following items to this meeting: The Green Record Book, this week’s MATS,
and next week’s MATS. Be prepared to discuss upcoming taskings for the TFS record any
information in the Green Record Book.

Attend the daily 1400 meeting to reconfirm the next day’s schedule (number of lines,
configurations, configuration changes between go's, etc.). These items should be discussed
with the AMU schedulers prior to the meeting. Missile availability can be obtained for
AMU schedulers or from the AMU directly.

RD-A187 341 A _TRAINING MANAGEMENT AND SCHEUUL ING SYSTEM FO
STATES AIR FORCE T
WRIGHT-PATTERSON AFB OH M T MATTHEWS JUN 87
UNCLASSIFIED AFIT/CI/NR-87-897 F/G 5/9

L
SRREREE E

=
p

ks

MICROCOPY RESOLUTION TEST CHART
WTIONAL BUREAU OF STANDARDS-19634A °

e
g \.

10.

11.

12

13.

DAILY SCHEDULING CHECKLIST
Review the previous days flying schedule and record the number of scheduled/flown sorties.
Advise the Operation Clerk to erase yesterday’s schedule.

After validating the previous days schedule -- use it to do the bean count for who flew, who
served RSO, RTO, and SOF.

Look at the bean count and see who needs to fly. Evaluate this against other scheduling
priorities directed from the TFS/CC, DO, or Flight Commanders. Consider other hard
inputs such as checkrides, MQT sorties, and upgrade sorties.

Ensure you have coordinated with training so as not to schedule something that needs a
prerequisite. This occasionally happens during MQT upgrade when someone had a non-
effective sortie.

Make sure you have the correct sim, RSO, RTO, and SOF periods posted.

If it is Monday or Wednesday, make sure you have scheduled 1400 Egress/Hanging Har-
ness training. If the Sq LSO is scheduled to track that day, make sure he is off the flying
schedule that aftemoon. Also schedule Egress/Hanging Hamess for all VIP/Eagle
Elites/Mx Appreciations at 1230.

Check the weekly meetings sheet and confirm the next day’s meeting are posted. (e.g.,
1600 daily stand-up).

Check the ground training calendar to make sure that someone doesn’t miss scheduled
chemical warfare training or .38 caliber pistol training.

Afier all known quantities are up, consider *‘pop ups’’. Do we have to schedule a static
display pilot? Do we have an aircrew extraction? Have take-off times, ranges, or
configurations changed? Did we get ‘‘pop up’’ DACT? Did previously scheduled adver-
saries cancel?

Confirm who is on leave or TDY. Ensure this information is posted on the deconfliction
sheet. Also put all meetings, appointments and crew rest requirements on this sheet. Now
you are ready to put names on the schedule. USE the deconfliction sheet. Keep it current.
Remember, unless you are quick turning someone, you should allow 6 hours between their
initial brief time and their next event.

Post names for all the hard requirements first, (checkrides, MQT, upgrade sorties, or
TFS/DO directed priorities).

Post four ship flight leads; then element leads and wingmen in order. Use flight pairings to
the max extent possible.

14.

15.

16.

17.

18.

19.

20.

Ensure the CC, DO, or ADO are in the squadron during flying operations.
Ensure both the CC and DO are not airborne at the same time.

If the Wing DO is flying with us make sure the CC is available to take his brick or arrange
for some other CC to take it.

Run the deconfliction checklist, make sure the deconfliction worksheets are correct.
Have your schedule approved by the DO or ADO prior to getting it the Ops clerks by 1200.
Make sure Mx gets a copy in time for the 1400 Mx Meeting.

Standby for flash floods.

Deconfliction Checklist

-- All lines filled

-- Crew rest first and last go’s

-- 4-ship flight leads, 2-ship element leads

-- Aircrew turn times if applicable

-- Ops Sups deconflicted

-- SOF's deconflicted

-- SIM’s deconflicted

-- Stand up covered

-- MTG’s covered/deconflicted

-- Names deconflicted by Egress, H/H, CW Tng, ITC, etc.
-- Names deconflicted for appointments

-- Remarks reflect all the following where appropriate: DACI‘ phone numbers, TUB,
FLUP, IPs, Mass Brief times/places, Area Restrictions, etc.
-- T/O times appropriate for area times.

-- VIP’s covered - Egress, escort, etc.

APPENDIX C

TACM 51-50 Excerpts

C-1

TFS GUIDE TO S51-50 REQUIREMENTS

JUL - DEC 1986

EVENT/SORTIE MR-EXP MR-INEXP MS~-EXP MS-INEXP CURRENCY (INEXP/EXP)

TOTAL A-47 A-53 30 30
B-59 B-70
c-83 c-96
GCC A-37 A-43 5/MONTH S/MONTH
B-48 B-58
c-70 c-82
AIR/AIR A-33 A-39 90 DAYS
B-44 B-54
C-66 c-78
NIGHT A/A 4
NIGHT SORTIE 2 2
DART A-l A-1l
B-QUAL B-QUAL 12 MONTHS
c-2 Cc-2 QUALIFY
CW FLT 1 1 . ;
INSTRUMENT 0 2 0 2
IP FLT 42 60 DAYS
COMP FORCE SRTY A-0
B-1
Cc-2
RED FLAG 1/15MON 1/1SMON
EVENTS
ACBT A-S0 A-60
B-70 B-84
c-98 c-119
SWEEP A-2
B-8
c-12
4-SHIP SWEEP A-2
B-4
c-6
POINT DEFENSE A-2
B-3
C-6
ESCORT A-2
B4
C-6
CAP A-2
B-4
Cc-6
4-8HIP CAP A-2
B-4
c-6

C-2

HIGH INTCPT A~4
(ABOVE 40M') g-a
-d
LOMAT INCPT A-10
(BELOW 1NM°) g-ig 60/90 DAY CURRENCY
EC TRAINING
£C EVENT (RWR) A-4
B4
c-8
EC RANGE EVENT A-l
-1
C-1
cCoMM JAMM A-1
B-2
c-3
ECCM INTCP A-1
B-2
c-4
INSTRUMENTS
PERETRATION 6 6 3 6 NEXP MAY DO
PREC APPR 12 18 12 19
RON-PREC APP 12 18 12 18 E APPR
HUD OFF 3 3 3 -3 IN THE S1M
PENETRATION
BUD OFF ¢ ¢]
PREC APP
nUD orr 3] s 9
NON-PREC APP
SIMULATORS 3) INST & EPs ON EACH:
NORX GRADED SIN,
$IM IP EP MSN 1 1 EXCEPT SIM IPs
cH ARE TRNG
ﬁw—uw 1
CcW $IM 1/BALP® 1
AAR 3 3 2 6 NONTHS
AAR-NIGHT 1 b 1

c-3

FORMATION TAKEOFF 60/90 DAYS

FORMATION LDG 60/90 DAYS
FLT LD WING TO 6 MONTHS
FLT LD WING LDG 6 MONTHS
NIGHT LNDG 2 2 2 2 15/30 DAYS**
IP BACK SEAT LDG 45 DAYS

* TAC GOALS ONLY

= IF A CW EXERCISE FLIGHT IS NOT ACCOMPLISHED, AN EXTRA SIM 18 NEEDED.

$ MS AIRCREWS CLEARED TO FLY TACTICAL EVENTS WILL PRACTICE TACTICS IN
THE SIMULATOR

$$MS AIRCREWS PARTICIPATING IN THRE EC PROGRAM MUST ACCOMPLISH THESE
EVENTS -

**A DAY OR NIGHT LANDING WILL UPDATE THIS CURRENCY

““FAILURE TO MAINTAIN CURRENCY WILL RESULT IN LOSS OF MR STATUS.

MR/ MS

Hang

S3AM

_LTEw TRAINING ACTIVITIES RECORD

ONT Juld
~-Flying Time-
-DAY -
6 Intercept/Other

AHC

BFM

ACH

ACT

DACT 2v

DACT 4v

SG17 _DACT 2v AG

&I 6|

SG18 DACT 4v AG

SG27 DACT Other

AC29 DARY

S10)1 _Inst Single/Chased

t Dual

SP0) Proficiency

SC50 FCF

SBOO 1P Back Scat

.SG02 A/A
{STIY Inst Single/Chased

“S175 Inst Dual

TSPG5 Proficiency

SBOS TP Back Seat

~DEP, =

1 ECOS CM Intexcept

(14
ECI0 EC Range Event

¢ P e IR

c-5

) TEW IR \
MRMS
NAME
SSAN N
peOm July 9AY .11 -
~ARRIVAL /APPROACH= an

PAI1O Penetration . —
lEii Eﬁi-éﬂ Pen
PAOl Precision]
D-off Precision
AO4 __Non-Precision

PAC6 HUD-off Non-Pre

hi

Lead

Ef

~OTHER-
.CW60 CW Flight
CRT0 e Exercize
AS82 :o-g Force Sortie
1 1P Plight
[Upgrade Particlpatlon

[

£

|

3

Sim Hours (Cockpit y
PAO1S Precision
A03S HUD-off Precislon
A04S Non-Precision

O on-Pre

CWS0 CW Sim

SFO01 1P Console hours
"SF60 Sim ecert

n ssion

i
H

|

3

P,

-4 -
log 1 for eac ur of training

-

C-6

APPENDIX D

- Letter of Xs

LETTER OF X’s

A. REFERENCES:
1. AFM 171-190 Volumes A through J
2. AFR 55-15
B. OBJECTIVE:
Provide procedures for maintaining each squadron’s letter of X's. The letter of X's

will be used to document TFW pilots’ qualifications as specified by the DCO to
include, training status, weather category and

o UFD 860711
= . TFS LETTER OF X'S

6 A -
C a F S
W C L L L 19
E X T AARF T MEFSHRKR
Fi X € L N suyL I IFCUOT)
NANE RNK NO P T V G DGD P PEFF NGO AVL REMAREE
FLibH _
ereses weees o Y 3 E A BOMR X X 4E X X X cc
LTC =z E & B MR X X 4E X X X Do
y#ad 3 E A B MR X X 4F X# X X X % a400
i maJ i1 E A B MR X X 4E X#= X X X X LVAG 0ve7
Y CRPT 12 N B OB OK X . AR
{CPT is N D e
TLFY 14 E A B MR L ¥ £ Dk 1167
JOFT 1% N B A BR T P
1L 16 N C B fiR X X
mAd 21 E A B MR X X 4E X X X X FLce
CPT 23 E B B MR X 4E X P
CFT 24 N C A MR T X K
Y OPT 25 N D i
U ILT 27 N B B MR X 2ZE X X X
iLT 28 N C B ®™R X X X
CF1 29 N & B PR X X X
Med 31 E A B MR XX 4E X T X X % FLCC
1Ly 32 N C B MR X X X
CPT 33 E A B MK X 4 C X X X
CFT 34 E A B MR X 7 T XX Woux
Yy CPT 36 E B B K X X 4E X X X X TDaV 156% -
CPT 37 E B B MR X 4ET X X XX
1ILT 3% N C B MR X X X YDAV 1867
IILT 39 N C B MR X XX
YA 41 E A B KR X 4 1 X X X LVAV 0967 _
1ILT 42 N C B PR X X X
CPT 42 N B B mMR X 1 YA LVeyY 1467
CPT 45 N B B MR X 4t X X
DILT 47 E B B MR X 4E X X X XX
CPT 4& N B B ¥R X 2E T X X
CPT 49 E A B MR X X 4E X X X X
coL 51 E C ms WeCcv
Mhd 52 E A& B AR XX 4E X XX XXX WDOW
» CPT 53 E B8 MS X X 4E X X X X wDoT
. MAJ 54 E_A .- mS X 2E X X X WDOO
CPT S5 E & B MR ¥ ¥ 4C X X XX wpowu
LPT 5 E A B MR XX 4E X X X X X ubov
CPT 58 E B ns 4 FTS6
CoL 9¢ E B Ms WGECC

E =13 FL2E § IP %= 2 &0F = §
’ Ni. =16 FlL4t=le Ir = 7 SEFE= ¢
s LIL. USAF IG/MG= 2 FL/T 2 ZE = 45
OPERATIOUNS OFFICEN IP/7= i
NUIES ALUVE FIGURES ARE Fui wriFi-1 PILOIS uineYiil:

D-3

APPENDIX E

Scheduling Shell

E-1

b UIV X b2 ULV X b -
b-UIV/2-u1v -
b~uIv -

Lty -

PO S IGWOXS WHIT) WPEe uo SuoTAd paroguy
PUR SUTTOIED B3 AU ATTFEJ0U ({8 300400 TTV 9

. *elqeiieAs/a1qissod UaNe
"wixes a3 03 petIvIsul 8q (1IN sBnid Joje(nels ¢-UIV °§

‘N e
V2 UOTITIS PUeOQIND A3 ATUO UD PIPEOT 3q PINOUS SPOd TIDY °h

*pod SY3 IR POTITISVY 8q TIIA O1QeD
Jnyeedes ® *(ULd L-UIV Ou) pepeol £ pod DY we Atwo 3T °E

e
OEPROT USUA PRTTRISUT SOTQED JEIPRdRs BARY TTIR Su-uIV TIV <2

*solIsSTe AW SATIOD
88 (1 PUR) IJDXI) SUBTICMBE 0D AUV PUe L-UIV TIV ¢

L% 1T]

| b : ¥

SN0 ON -
€0d 1aney) -

(UBICIS (VD) €04 TET-DW/NY -
Uld Wb ULV -

Uid ‘db VIV -

ud ‘e ULy -

40d WY -

= 1 S2ueUPJY ON/GIV WOTINIT ATT IV 2 ¢ UDTINIS UOTAY -

DN
I spunoy 00b -

(I }
4EZ00a0Kk
[} ’
CSOVARWALYG T Ve

ouImxy ting 1D Ayde) ‘feussw] (Ing -
teuuayxy o *1 D Ajde] s [euadu] [ing -
SuIIJSIUE) ON *1.D TaT OO0 *(®usduy (N3 -
swey Sula/sutIsone) 1D TIng *TRudW] (Ing -
spe) ButA TRUUeIX] S1 D TINg TRl 11Ny -
WeL SUTleWe) *1 D (Ing *{euse] LIng -
SRS TRLIR] O *1.D TINJ ‘Teusd] TN} -
POTITISUT SIURL TPULOIN] ON *TRUSW]L ¢ 0OY'L -

SSUTA-SUY [JE)/SHur) TRUSIN] UOTTEY 00N X € *TeUsA] TN -
sSugpa/syueg TRUSEIN] UOTTEY OOY X 2 *TRAW] (Ing -

WSS ARRL TRLIN] UOTT®Y O0Y X T *(PUsel (Ing -
POLIPISU] SYUR)L [EUUNIX] OF * [PUAW] [Ing -

$3¢0) NI

LY LV F EWE T B 3 R k- P

E-2

{
- - .
- - Bl s i - - Uk

LTI,
LT3 E!
% Se3ideemsinzel
SAE2RRS38822828

ol
11
01
20
S1
40
1
68
oL
90.

_iz}
'-i;.
?
I
;
;
:
|
3
..2-
P
"%.
$
3

E-3

sje v es= I T l-llmlnill..ql@ﬂcz afe
R B iy
J T - “ - T “ aoﬁjﬂ- .
? T3 vanIJu w....'....llm.n. tli#ﬂ nncnd w.me
=T : m | T “..wmﬂﬂlﬂ.ul
” M ”mdl “ W : T m gm m:m
3 T (It NOWIIOBET - OOEI! ©oec: Iuolno €10 ¢ SObt ¢ O0SET 1113 20 ° 6500V} :Wm
T " e T
SHOT -G T S T T s T 808 T ET0 T TAIT T SR T o T gggge” P
. Mvm isto1 - oS-W 88! “ . ruvy umm&illv&ul..

E-4

:$360 -~ 0060

L]
: : 33 : - gzocy: <ol
) H : s H _:
i i T3 : i - gzoty: 9od :
' : : : : ! :
S360-0060 1000 ; TIE NOWI.0p0T - 0O001: - UMJY: @309 : €-50 : %0l SZ60 1390: 10 reotv’ %8
: : pTY)

Ho ¥

H43

2

H !
0r60-S260 130087]

ote0 (110! 1O
73y

ne £°10 G0t

N

- o o

SN : 10714
*

LEOEY
YEOEV X

[] O

1JUJINIIS TWI!

XN INQY¥OUNDS ¢
* Ll

TNCTIGEMI TONTINS 1; 3003.0] “ONT aI3RNN
semimmesecaooiNSM P 3ULT O IOW IS
1-¥0S { 1 JUN U T 211408

3002
914N0J ¢

tcccmcmaea.

03 WO WIS

E)oY HE 1
FONYY/10 . 70U |
” .

e L)
- ——— P S S — -

CHOY LG THL BE

AOONOM § 070708 Si-4 $i1 15§ LITH
AYD SN JAUIYIIYINOTIIIS/INDL TS NOTIHZ INUOHO

30D WA . umg ! W ¢

- e i e v - — G - - A

2N0IHIS IHIT1VS 1UIUTY >.=¢a..l.»a.xu!

APPENDIX F

PAS Code

F-1

Notes on the Pilot Assignment (PAS) Code

The PAS code given here is for the basic daily scheduling problem. This particular version
of the code is designed to be used with pruned data. In this case pruned means that only pilot
qualifications for jobs which are to be assigned are stored. In addition those arcs which are
infeasible due to pilot nonavailability have also been removed. This can easily be done the prior
evening once the previous days flying is complete.

Input consist of the job data and the applicable (pruned) pilot qualifications. The user also
specifies the print level as well as whether the job categorizing specified in the text is to be used.
PAS will then return a feasible schedule if found. If not and catting was not selected, the program
starts over and the user specifies catting (unless the infeasible solution presented was acceptable).
Once a feasible solution is found , or an infeasible solution if catting is selected, the user is then
asked whether a higher objective valued solution is desired. If so improved solutions are pursued
until a single pass through all of the jobs can produce no more improvements.

The code presented here is a developmental one. One could make reductions in memory
requirements as outlined in Chapter 3. Execution times can in all likelihood also be reduced
significantly through some of the procedures suggested also in Chapter 3. Hopefully future
research and interest by the Air Force will lead to such a code.

F-2

dinclude “timer.h"
#include "macro.h"®

/"".t'.-"tvI"i".'I."'.'I'.'i"".'i"..i'.‘l'.'.t.."'O""""".""""'"

PILOT ASSIGNMEKNT ALGORITHM (PAS)
MARK T. MATTHEWS
22 JAN 1987

Pt srrrrrry e e e ey e R R T I Y R P R R R AT RS R A R AR R 2 R R A AR Al dd
(22 X222 R 2R 2R X 'l."'0t.'.t'.t"'.'"'tt"".'t...i.'.t..'ﬁt'...0"0.."'.'...,

/eesrensnasssssss DECLARE GLOBAL VARIABLES #teawsnsesesssssnsdedennsen/

/* The Node Vector */
int depth[NX]: /* depth of a node in the tree */

int pred[NN):; /* pred of a node in & tree */

int wp(NN]}; /* orientation of the pred arc of a node */
int predl(KK); /* the pzed axc of & node */

int thread([NX]; /+* the thread of a node */

int dual[NN]); /* dual price of a node */

int point [NN]: /* pointer to the first arc of a pilot */

int source[NX): /* supply or demand level of a node */

/* The Arc Vector */
int cost[NAl: /* cost (price) of an arc */

int dnode[NA); /* the to node of an azc */

int flow([NA]l; /* flow over & arc */

/* Genezal variables */
int n=C; /*marker for the from node */

int w=0; /*marker for the to node */

int from=0; /*markexr for the from node */

int to=0; /* marker for the to node */

int jobleft=0; /* indicates whether jobs are left Detween transp. prob. */
int pivotcount=0; /* marks whether any pivots have occured */

int pivot=0; /* marks whether any arcs haved priced favorably ¢/

int
int
in:
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
ine
int
int

int

/* double variables */
double endjob=0.0; /* indicates when the the last job ends */

double jobstart=10000.0; /* indicates when the first job starts */

fmin=0:; /* min flow for a ratio test */

linkin=0; /* the entering link */

M=10000; /* the Big M value */

tt=0; /* counts the number of transp prob solved */

q=0; /* The number of jobs (including sink } */

level=0; /* print level */

maxl=0; /* the max number of links (real links) */

N=C; /* number of pilots plus bogus */

imp=0; /* marker indicating whether anvtlpxovcd solution was found */
nogo=0; /* indicates that no feasible arcs remain for a job */
last=0; /* general marker */

bogus_label [NJ); /* indicates whether that job is labeled to bogus */
feaslinks[NJ):; /* indicates a feasible link to a given job */

i=0; /* tracks pilot number */

gold[NF): /* indicates number of last job assigned */

j_cat: /* number of job cats designated in the input file */

cat; /* the actual cat number being priced in the algorithm */
bflow[NA); /* a backup tracker of arc flow */

timeperiods=0; /* the number of timeperiods in a day */

ttime=0; /* the number of times a transp problem has been solved */
infeas=0; /* indicates no feasible solution found */

price_count; /* counts the number of pricing operations */
pivot_count; /* counts the number of pivots */

swap_count; /* counts the number of swaps */

imp_count: /* counts the number of improvement swaps made */

double fillindex([NJ]:; /* the fillindex of & given job */ e

double crewrest=0.0; /* the length of the Crewrest period */

F-4

/* structs (see “macro.h") */
JV 3Job[NJ}: /* struct for each job */

JV *job_pointer [NP): /* pointer to each pilot assigned job struct */
FV pilot([NP]; /* struct for each pilot */
RP heap[NJ): /+* struct for each job in the heap */

EP *hp:; /* pointer to each job heap struct */

/tt't.‘.'.'t.."‘t BODY OF PROGRAM " MAIN L t..‘tt..tt.ﬁ.tiﬁ.t‘.tttt/

main ()
{
/--.-oo----‘-..'.o---. DECLARE LOCAL MAIN VARIABLES KRR AR RN KRR AT KRN RS

/* general utility variables */
int na,nn,oldc,work,bprice,old, aa,bb,cc,k,totcost=0,can_do;

int cont,cat_start=0,cs,trip=0,uj,date(4]:

int found_label; /* indicates a job is labeled to "bogus" */

/* structs */
JV n_in;

/* time tracker variables */
double data_in_time, source_time, init_time, price_time, pre_swap_time:
double pivot_time, sssign_time, change_time, swap_time, infeas_time:
double heap_time, impr_time, tot_time, stop:

/.."'.."'.'Q...Q"' In‘ti,l"inq "'.".."'."Q.'Q.'.Q'."'Q..'./

/* Set the number of timeperiods in a day */
start_over: timeperiods = 100:

pre_swap_time = 0.0;

/* Set the length of the crewrest periods */
crewrest = .00%0:

/* Input the datas */

get_time(&rstart);
data_in ()

get_time (&rstop).
cpu_time = show_time (&rstart,&rstop):
data_in_time += cpu_time.usr;

/* Initialize the total cost */
totcost = (q*M) + 1;

/* 1f "catting"™ not selected look at all jobs else lcok at jobs by cat */
if (infeas == 0)

cat_start = j_cat;
else

cat_start = 1;

for (cate=cat_start; cat <= j_cat; ++ cat)
{
i=0;

/* update arc prices based on previous job assignments */
if (cat != 1)
change_cost ()

/* update job deamands based on previous job asignments */
repeat: get_time(&rstart);
cpu_time_start = show_time(érstart, érstop);
jobsource ():
get_time(sxstop):
cpu_time_stop = show_time (&xrstart,érstop);

source_! time += {cpu_| time _stop.usr - Cpu_time_start.usr);
tot_time += cpu_time_stop.usr - cpu_time_start.usr;

/* initialize using the Big M method */
get_time (éxstart);
cpu_time_start = show_time(érstart,ézstop);
initialize ()
get_time (éxrstop):
cpu_time_stop = show_time (&rstart,érstop);

init tim. += (Cpu_! time _stop.usr - cpu_time_start.usr):;
tot time 4= cpu_’ time _Stop.usr = Cpu_ time ltuxt usr;

/eeeseccescensansneses Pricing and Pivoting sedensecseddddonttnnnaRRRte/

i=0;
while (i<= R)
{

F-5

[3
h

/* Price each eligible arc */
get_time (srstart);
cpu_time_start = show_time(&rstart,érstop);

price ():

get_time(&rstop);

cpu_time_stop = show_time (érstart,érstop):

price_time += (cpu_time_stop.usr - cpu_time_start.usr):
tot_time += cpu_time_stop.usr - cpu_time_start.usr:

/* If an arc prices favorably pivot it in */
if (pivot < 0)
{

get_time (srstart);

cpu_time_start = show_time(&rstart, érstop);
pivot_out ():

get_time(&xrstop):

cpu_time_stop = show_time (érstart,&rstop):

pivot_time 4= (cpu_time_stop.usr - cpu_time_start.usr):
tot_time += cpu_time_stop.usr - cpu_time_start.usr:

}
/* if an arc priced favorably go through the arcs again */
i (i==ll g& pivotcount ee=l)
{

i=0;
pivotcount = 0:

)

/* assign pilots jobs based on the results of the simplex algorithm */
get_time(srstart);
cpu_time_start = show_time(trstart,&rstop);

assign ():
get_time(sxrstop):
cpu_time_stop = show_time (&rstart,ézstop);

assign_time += (cpu_time_stop.usr - cpu_time_start.usr):
tot_time += cpu_time_stop.usr - Cpu_time_start.usr;

/* if there are ary jobs left do the following */
i2 (jobleft == 1)
{
can_do = 0;
/* update arc prices based on job assignments */

repeat2: get_time(&rstart):
cpu_time_start = show_time(srstart,érstop);

change_cost ():

get_time(&rstop):

cpu_ “time _stop = show_time(érstart,éxrstop)’

change_: time += (cpu_ time _Stop.usr - cpu_time_start.usr):;
tot_time += cpu_time_stcp.usr = cpu_time_ start.usr;

/* See if any feasible links exist to unassigned jobs */
while (job_pointer(N]->number != Q)
{

if (feaslinks{job_pointer [N)}->number] == 1)
can_do = 1;

job_pointer[N] = job_pointer[N]->next:
}

iok_pointer (K] = &pilot({N].assigned(l];

/"t.'tt'tt.tttt' shkddk ok s"apping ..."tt't'.tt..t'.'Qtt".'ﬁ'.tt.ﬁ"t."./

/* If no feasible links exist try to swap out the job */
if (can_dc == 0)
{

get_time(érstart);
cpu_time_start = show_time (&rstart, rstop);

if (swap_count == 0)
pre_swap_time = price_time;

swap (N):

get_time(éxrstop);
cpu_time_stop = show_time (&rstart,érstop):
swap_ time += cpu_ time _stop.usr - cpu_time_start.usr;
tot timc += cpu_time_stop.usr - cpu_ tine start.usr;
Tif (nogo !I= 1)
goto repeat2;

}
/* otherwise start over with the reduced transportation problem */
else if (can_do == 1 || (nogo != 1 && can_do == 0))
{

zero_pilotvector(N);
goto repeat:

)

printf ("Initial soln usr time is $6.2f \n", tot_time):
/* make the final initial solution assignments */
get_time(&rstart);

cpu_time_start = show_time (&rstart,&xstop):

assign (N);

ges_time (&xrstop);

cpu_time_stop = show_time (érstart, bzstop):
assign_time += cpu_time_stop.usr - cpu_time_start.usr:
tot_time += cpu_time_stop.usr - cpu_time_start.usr:

/* find the jobs labeled to bogus */
get_time (&rstart);

cpu_time_start = show_time (&rstart,érstop):
job_pointer[N] = gpilot[N).assigned[1]:
for (i=1; i<=q: ++i)
if (bogus_label[i] == 1)
{

found_label = 0;
while (job_pointer [K]~>number != 0)
{

if (job_pointer[N)=->number == 1)
{

job_pointer(N] = pilot(N].assigned{gold[N]].next;
found label = 1;

}
else if (job_pointer [N]->next->number == 0 && found_label == 0)
{

n_in = job[i):

n_in.number = i;

add(N,n_in);

Job_pointer([N) = pilot(N].assigned[gold(N]}.next;

}
else
Jjob_pointer [N] = job_pointer(N]->next:
}
job_pointer [N] = &pilot [N].assigned[1]:
}

job_pointer[N) = gpilot(N].assigned[l}:

/* If any jobs are labeled to bogus print who is qualified to do it ¢/
while (job_pointer(N]->number I= 0)
{

uj = Job_pointer [N)->number;

printf ("\n"):; N
printf("Infeasible soln found"):
printf("\n");

if (level == 10 || level == 7)
{
printf ("Unable to assign job %d\n", job pointer [N]->number):;
Frintf ("The following pilots can perform this job\n"); -
printf ("Pilot# Job# Start Stop\n\n") ; L
for (i=1l; i<N; ++i)
{
for (aa=l; aa<=pilot[i].next; ++aa)
if (pilot[i).typelaa) == jobluj].type)
while (job_pointer[i]->number != 0)
y '

printf ("%3d%10d",i, job_pointer[i)->number): —
for (k=i; k<=3; ++k)
date[k]=convert (job_pointer(i)->start,k):
flug: if(date[3) <100)
printf (" 00%24d",date[3));
else if (date([3) < 1000 && date(3]>= 100)
printf (" 0%3d",date(3));
else
printf (" $4d",date[3]);

H

if (tzip != 1)
{

stop = job_pointer{i]j->length + job_pointer[i]->start;
for (k=1; k<=3; ++k)
datelk])=convert (stop, k) :
trip = 1;
goto flug;

else
{

txip = 0;
printf("\n");

) -
job_pointer(i] = job_pointer[i]->next:
}
job_pointer(i) = &pilot(i).assigned[l];
) |
}
job_pointer[N] = job_pointer(N}->next;
}

job_peirter(N] = gpilot[N).assigned(1); Lf”‘

/* 1f we’re infeasible and “catting” not selected, exit so user can start over
with "catting " */

F-9 '

if (jok_pcinter[N)->number != 0 && infeas == ()
{

printf ("Start over\n\n");
exit (9);

get_time(&rstop):

cpu_time_stop = show_time (&rstart,&rstop):

infeas_time += cpu_time_stop.usr - cpu_time_start.usr;
tot_time += cpu_time_stop.usr - cpu_time_start.usr;

/.t'tiit'i.t"tﬁt'tt‘tﬁ"'.ﬁ Imp:oving tQQttt'ti'ﬁittt‘ttﬁ"t'.ttttt'tt't/

doit: get_tirme(érstart);
cpu_time_start = show_time(érstart,érstop);

/* order jors in ascending order based on arc prices */
heap.() .axc = 0;
bnode [0) = N;
rezpCl.cost = M 41,
heap{0] .next = &heap[NJ-1};
heap[NJ-1}.arc = NA-1;
bnode [RA=-1] = 0;
heap[NJ-1).cost = -M-1;
heap[NJ~1).next = &heap(0):

for (aa=l; aa<=N; ++aa)
for (k=point[aa):; k<=point{aa+l]-1; ++k)
{

old = NJ-1:;

hp = gheap(0]:;

if (bflow[k] > 0 && bnode(k])-N != q)
{

heap{bnode [k]-N) .arc = k;

for (cc=1; cc<=pilot({aa).next; ++cC)

if(pilot(aa}.typelcc)==job(bnode[k]~-N].type)
{

heap(bnode[k])-N).cost = pilot[aa).cost(cc]);
heap(bnode(k])~N].pilot = aa:;
while (heap|[bnode[k]-N).cost<=hp=->cost)

{

heap{bnode[k)-N].next = hp->next:;

heap [bnode [hp->arc] ~N] .next = &heap [bnode[X])-N);
heaplold] .next = gheap[bnode(hp->arc]-N]:

old = bnode[hp->arc]-N;

hp = heap|[bnode [k]~N] .next;

/* compute total present cost */
hp = heap(0!.next;

oldc = totcost;

totcost = 0

wnile (hp->arc != NA -1)

{

bprice = hp->cost:
work = bnode[hp->arc]-N;
if (level == 10)
print£("%5d %5d\n",work,bprice):;
totcost += bprice:
hp = hp->next;

}
get_time(&rstop):
cpu_time_stop = show_time(&rstart, &rstop);

heap_time += cpu_time_stop.usr - cpu_time_start.usr:
tot_time += cpu_time_stop.usr - cpu_time_start.usr;

printf ("Total cost is %d\n",totcost):
printf("Do you want to get an improved solution? (yes
scanf ("%d", &cont);

if (cont == 0)
exit (8);

= 1)\n\n");

/* if totalcost has improved try to find another improvement */

if (totcost < oldc)
{

hp = heap(0].next:
while (hp->arc != NA-1)
{
aa = bnode[hp->arc]-N;
bb = hp->pilot:
¢s = hp->cost:;

get_time(&xrstart):
cpu_time_start = show_time(&xrstart,érstop);

impr (aa,bb,cs);
get_time(éxrstop):
cpu_time_stop = show_time (&rstart,&xrstop);
impr_time += cpu_time_stop.usr - cpu_time_start.usr;
tot_time += cpu_time_stop.usr - cpu_time_start.usr;

hp = hp->next;
if (imp ==1)
{

get_time(&rstart);
cpu_time_start = show_time(&rstart,éxrstop);

F-11

assign ():

get_time(&rstop):

cpu_time_stop = show_time(érstart,&rstop);

impr_time += cpu_time_stop.usr -~ cpu_time_start.usr;
tci_time += cpu_time_stop.usr - cpu_time_start.usr;

imp = C;

printf ("Tot time to this impr is #6.2f \n", tot_time);
goto doit;

/it‘ﬁﬁi"ﬁ'i..*iti.tﬁ.ﬁ Data ptintout ﬁﬁ'ﬁiﬁﬁﬁ.ﬁ.'ii'.."i*'..*.""ﬁ.'/

/* compute and print the problem stats */
printf("\n\n");
Frins "Ictal usr time is %6.2f \n",tot_time);

printf("\n";

nn = N +g +1;

na = point[N+1}-1;

printf("¥d Nodes %d Arxcs\n", nn, na);
printf("Price_count is %d\n”, price count):
printf ("Pivot_count is %d\n", pivot_count);
printf(“"Swap count is %d\n", swap count);
printf("Imp_count is %d\n\n\n", ~imp_count);

printf("Input time is %6.2f\n",data_in_time);
printf ("Source time is %6.2f\n", source_ time):
printf("Init time is %$6.2f£\n",init_time);

if (swap_count != 0)
price_time -= pre_swap_time;
else
{
pre_swap_time = price_time;
price_time = 0.0;

}
printf("Price time is %46.2f (preswap) and %6.2f (postswap)\n",pre_swap_time,
price_time);

printf("Pivot time is $6.2f\n",pivot_time);
printf("Assign time is 86. 2£\n",aasiqn time);
printf ("Change time is %6.2f\n",change_time):
printf("Swap time is %6.2f\n",swap_ time):
printf("Infeas time is 36.2£\n",infeas_time);
printf("Heap time is %6.2f\n", heap_! time):
printf("Improve time is $6.2f\n", impr_time):

}

/t."'ti.ii"!tt't'. Last Card of the Main program t’.tt.’.!'tt‘.t"tttl"!/

F-12

#define
sdefine
#define
#define
4define
ddefine
#define

K
NI
NA
NQ
ND
NN

51 /* number of pilots %/

51 /* number of jobs */

1001 /* number of arcs */

21 /* numer of guals per pilot */

11 /* max number of duties assigned a pilot */
101 /* total number of nodes */

MJT 1001 /* the highest number used for a given job type *’/

/* define the job struct */

typedef struct jobvector {
int cat; /* the job category */
int type: /* the job type */
int number; /+* the number (demand) of a job */
int label; /* marker indicating whether the job has
int con[NJ]; /* the conflicting jobs */
dcikle start; /* job start time */

double length; /* the length of a job */
struct jobvector *next; /* pointer to next job */

yav:

/* defire the pil
typedef struct ({

ct struct */

been labeled */

int type[NQ]; /* the job types a pilot is qualified to perform */
int cost[NQ): /* a pilot’s price to do a job */
int swapout [ND]; /* tracks jobs a pilot must swap to take another job */
JV assigned([ND]:; /* the jobs assigned to a pilot */

}PV;

/* define the struct for the heap */
typedef struct heaper {

int arc:; /* the arc of an assigned job */

int cost:; /* the above assigned arc cost */

int pilot; /* the pilot a job is assigned to */
struct hezper *next; /* pointer to the next job in the heap */

}HP;

F-13

¢include <sys/time.h>
#include <sys/resource.h>

typedef struct {
double usr, sys;
} CFU_TINE:
get_time(rval)
struct rusage *rval;
{
getrusage (RUSAGE_SELF, xval):

}

CPU_TIME show_time(t0, tl)
struct rusage *tl, *t0;
{
CPU_TIME t

t.usr = (double) (tl->ru_utime.tv_usec
t.usr /= 1000000;
t.usr += (double) (t1->ru_utime.tv_sec

t.sys = (dcuble) (t1->ru_stime.tv_usec
t.sys /= 100000G:

t.sys += (doutle) (tl->ru_stime.tv_sec
return(t);

F-14

|

/* for accumulation user and system time */

t0->ru_utime.tv_usec):’
t0->ru_utime.tv_sec)’
t0->ru_stime.tv_usec):

t0->ru_stime.tv_sec):

#inclide <sys/resource.h>

typedef struct { /* for accumulation user and system time */

deulkle usr, 8sys:
} CFU_TIME;
int get_time(): /* has one argument of type struct rusage */
CFT_TIME st.ow_time () /* two arguments, returns cpu_time */
static struct rusage rstop, rstart:
static CPU_TIME cpu_time,cpu_time_start,cpu_time_stop;

#include <stdio.h>
s:nclude "macro.h™

/‘t'..."".'.t' BODY OP DATA IN PROGR.W ..‘.....-.‘.'-".."'.'."'.'../

/*Trnis reutine takes two input files. The first file is the jcb file such as

the following example:

2 110 1.126292e+01 2.083333e-03 b
1 120 1.126292e+01 2.083333e-03 1
1 130 1.126292e+01 2.083333e-03 1
1 140 1.126417e+01 4.166667e-04 1
2 210 1.126250e+01 2.500000e-03 1
3 310 1.126250e+01 2.500000e-03 1
4 410 1.126250e+01 2.500000e-03 1
4 410 1.126333e+01 2.500000e-03 1
4 420 1.126333e+01 2.500000e-03 1
s 5i¢ 1.126250e+01 2.500000e-3C3 1
5 510 1.126333e+01 2.500000e-03 1

The first column is the category number, the second the job type, the third
is jor start time, the fourth job length, and the fifth is the number of jobs
of this type occuring at this time. The first two digits of job start time
represent the month, the second two the day, the rest of the digits are the
time cf day where 1.000000e-02 is 24 hours.

Tre second file is the pilot qualification file such as the following:

1 110 -27
1 120 -56
1l 130 =57
1 140 -83
1 410 -4
1 420 -7
1 S10 -36
1 610 -99
2 110 =62
2 120 -42
2 130 =22
2 140 -96
2 310 -63
2 410 -14
2 420 -54
2 510 -11
2 610 =20

The first column is the pilot number, the second is the job type and the third
is the benefit of that pilot performing that job type. This file has already in
fact been synthesized to account for pilot nonavailability and to sequentially
number the pilots for input (in a separate routine not shown here).

These files combine to form a third data listing which contains the anode,bnode,
and cost (price) for each arc. */
data_in ()

{

/t...'.."..i'.".'. Declate Global v.!iables "QQ.*Q'.QQ.Qtt"ttt"'."'t.itt/

extern int j_cat,feaslinks([],M,level,q,maxl;

extern int infeas,N,point[],source(},cost|[],bnode(]);

F-16

[

e

-

P

extern double crewrest, jobstart,endjob,fillindex|];
extern JV jok[),*job_pointer|[]):;

extern PV pilot(]):;

/**wmesssnssessvase Declare Local Data_in Variables ¢eesevssesanvesesensecvs/
irt totijcb=C:; /* the total number of jobs */

int anode{3):; /* the from node */ t
dourle sumjob(MJT]: /* the total number of a particular jobtype */

double pqnumber ([MJT]; /* the number of pilots qualified to perform a jobtype */

int aa,bb,i,j,k,x,eof flag=5: /* utility variables */

/*Char variables use to read in file names*/

char in_namel([25],in_name2(25];

c T e

FILE *ir_filel, *in_filez, *fopen():;

/* initialize variables */
anode{1)=0; anode[2]=0; anode|[3]=0;

i=20;

/* initialize job_pointers */
for (aa=0; aa<=NP-1l; ++aa)
{

job_pointer (aa] = &pilot[aa).assigned(l];
for (tb={; bb<ND-1; ++bb)
pPilot [aa) .assigned(bb].next = gpilot(aa).assigned(bb+l];

[rrerssnsasannnsannenss ODENINg the Files taetastssnancnesnansntatsnonsnensn/

printf ("Enter the name of the job file:\n\n");
scanf ("%24s", in_namel);
printf(*\na");

printf ("Enter the name of the pilot file:\n\n"):
scanf ("%24s", in_name2):
printf ("\n\n%):

printf ("Do you want to cat infeas? (0 no, 1 yes) :\n\n");
scanf ("vd", &infeas);
printf ("n\n"):

F-17

b1

8 |

printf ("The fcollowing print levels are available:\n"):

prntf (" 2. Data read in files‘'n\n");
rintf (" 4. Initialization\rni\n"):

printf (" S. Pricing\n\n");

printf (" 6. Pivot\n\n");

printf (" 7. Assign\n\r");

rrintf ("Enter the print level\n\n"):
scanf ("vd", &level):
printf(“\n\n"):

in_filel = fopen (in_namel, “r"):
ir_file2 = fopen (in_name2, “r");

if (in_filel == NULL)
{

printf {(“couldn’t open s for reading.\n", in_namel):
exit (2):

}

if (in_file2 == NULL)
{

printf ("couldn’t open §s for reading.\n", in_name2):
exit (2);

}
. jobstart = M;
K endjob = 0;
k=1;
j_cat = 0;
if (level== 2)
printf ("The job file is:\n\n");

Y /* Read in the job file data */
while (eof_flag != EOF)
(-

eof_flag = fscanf(in_filel,“sd", &joblk].cat):
if (j_cat < job[k]).cat)
j_cat = job(k].cat;
{ fscanf (in_filel,"%5dt15e815e85d", &job(k).type, &job[k].start, Py
&job(k}].length, &job(k).number);

if (job[k].start < jobstart && job(k).start l= 0)
jobstart = job([k).start:

if (jobl[k].start + joblk).length > endjob)
endjob = job(k).start + job(k).length;

¢ if (eof_flag != EOF)
{

if (level == 2)
printf ("85d445d815e815e85d\n", job (k) .cat, job[k] .type, job[k] .start,
job(k).length, job k] .number) ;

F-18

sumjcbljobk].type] += joblk).number;
titjob += joblk].number:

}

+a

/* Set the sink job type */
job{k-1].type = 999;

q = k-1;

if (level == 2)
{

printf ("$5485d815e%15e85d\n\n", job(q) .cat, Job{q) .type, Jobiq) .start,
job(q) .length, job[q] .number) ;

printf ("The first joL starts at Se\n\n", jobstart):
Frintf ("The last job ends at %e\n\n",endjob):

}

r ZE3

kel: dwl; =1,

/* establish the job interference sets */
while (job{j).cat = 0)
{

if (level==2)
{

printf ("\n\n");
printf ("For job 8d interference is:\n",3j);

}

while (dokfk].cat 1= 0)
{

if ((Job(j).start + job[Jj].length > Job(k).start &&
, job[Jj] .start < job(k].start + job[k].length)

H
] (Job(Jj) .start + crewrest < job(k).start + job(k]).length)
|

(job{Jj].stazt + job[j].length > job[k].start ¢+ crewrest))
{

job{j}.con(i] = k; .
N it (levele=2) i
. printf ("%3ds3dv3d\n", 3,4, job[3].con(i]):
+ i = 1;
R }
k += 1;

j += 1
kel; iwl;
}
k = 1; i=1; j=1;

eof flag = 3;

/* Kead in the pilot qualification data */
while (ecf_flag != EOF)
{

ecf flag = fscanf (in_file2,"3%54",&anode(2));
fscanf (in_file2,"%5d%5d", épilot(anode(2)].type(k],
Srilot (anode(2])).costik]):

if (ecf_flag != EOF)
F3hc sz piici{anode(z]].typelk]] += 1;

if (anode[2] > anode(l)])
{

pilot (anode{2]].type[l) = pilot[anode[2]].typelk]):
pilctianode(2)].cost(1] = pilotanode(2]].cost{k]:
pilot(anode[l]).next = k:

pilot[anode([l])].type(k] = joblq]).type:
pilot{anode(l])).cost[k] = 0:

scurcelanode([2]] = 1;

anode([l) = anode[2]};

N += 1;

kel;

k 4= 1;
}

pilot{anode(2)]).type(k-1] = job(q].type:
pilot (anode(2]]).cost[k-1] = 0:
pilot (anode(2]] .next = k~1;
if (level ==2)
printf ("The fillindexes are:\n\n"):;
x = 1;

/* Compute the fillindexes for each job */
for (k=1; k<mq; ++k)
{

it (job(k]).type != job[k-1l].type)
{

pilot{anode(2)+1) .type[x] = job(k].type:
pilotlanode(2])+1).cost(x) = M;

F-20

if (k==q)
pilot[ancde(2)+1].cost[x] = 0;
X +=~ 1;

}
if (sumjob[joblk].type) != 0)
fillirndex[k) = pgnumber[job[k].type]/sumjob!joblk].type):

if (level == 2)
printf("job %d... %e\n",k,fillindex[k]):

}

pilot[anode(2]+1].next = x-1;
N += 1;

/* Set the supply level for bogus */
source [N+qg] = =N+1:;
if (level == 2)

printf ("\n\n");
pzintf ("The pilot file is:\n\n");
for (i=l:; i<=N; ++1)
fcr (k = 1; k <= pilot[i).next; ++k)
printf ("8$5d485d85a\n",1,pilot[i).type(k],pilot(i).cost([k])):

printf("\n\n");
ecf_flag = 3; anode(l) = 0; anode[2) = 0; i = 0;

x=0;

/* Determine the anode, bnode, and arc price data */
for (iel; i<=N; ++1i)
{

=0,
point (i) = x+1;
for (k=1; k<=pilot(i].next; ++k)
while (job[Jj).type <= pilot(i).typelk] && J <= q)
{

if (job{j).type == pilot{i).type[k))
{

x 4= 1;

cost(x] = pilot(i).cost(k]:
bnode [x] = N+3j:
feaslinks([bnode(x]~-N] = 1;

}
j += 1

F-21 e

}
maxl = x; point [N+1l] = maxl + 1:
if (levelw=2)
{

printf ("\n\n");
for (i=1l; i<=N; ++i)

{
printf ("Pilot’s %d arcs are:\n\n",i):
for (k=point([i):; k<wpoint [i+l])-1; ++k)
printf ("%5d%5d%10d\n",k,bnode(k),cost{k});
}
printf ("\n\n");
printf (" There are %d job-times (including nothing job)\n",q):

printf (" There are %d total real jobs\n",totjob):
printf (" There are %d total pilots (including bogus)\n\n",N):;

fclose (in_filel):
fclose (in_file2):

/t.i't*tt"tiﬂ*'t't Last c‘rd of D.ta in 'Q.'Q'i'i"'t‘*'tﬁt..'."‘.'tl‘,

}

F-22

#include "macro.h" e

/erxrrmrrrsrrxwnraxs Body Of Program JODSOUICe **usasrskksurashdsninn/
IAAAARARAA LS AL RS AR R AL RSl A Rl Rl it il il bl sl ldd
I

Jcksource updates the demand level of jobs based on current job assignments

't"ttii*tt'*tnttiatttt'ﬁ-t.tnﬂtttttttvanﬁtatt-ttttt***tt**"ﬁtttttttta/

/ﬁt'*tt*ittﬁtﬁii Declare global variables itt*"tttit*fi*t*t*i*ttﬁt/

[

extern int infeas,cat,point{],bnode{],flow[]),sourcel}, jobleft,q, N;
extern JV job{]:

/iﬁittt*tttiﬁttt Declare local v‘riables ﬁitttittttttttﬁittt'tttt/
int i;

/* Set the source values for each job */
if (jobleft == () ¢
for (i=1l; i<q; ++i) :
if (jobli).cat == cat || cat == 0 || infeas == 0) .
{ i
source [N+i] = -job(i]).number:
scurce([N] += job[i).number: -

) 1
else "

source[N+i} = 0;

/* Between transportation problems update job demand levels based on pre
vious job assignments */ "
if (jobleft ==1)

{

jobleft = 0;
source{N) = 0;
i = point|[N)}:

while (bnode(i] < N+q)

{ -

if (job(bnode(i)~N).cat <= cat || cat == 0 || infeas == 0)
{

source[bnode(i])] = -flow[i]; Voo
source[N) += flow!i):

F-23

flow([i] = 0;

i +=1;

}

/'ttit'it'iitt*ﬁitit* Last Catd of jobsOurce t*tt*tttit*t'*ttt*tttttt/
)]

J

F-24 :

#include "macro.h"

AdAAAAARAL S AL S L) Body of the Change cost Program t"'ttiﬁﬁt"t'ti'it.'/

/ttii*'iﬁ'i'*ﬁﬁi*i*i*"**l‘iﬁ*"ﬁt'tiﬁ*'*itiiitiiiltﬁ'ttt'f*.i..'t‘i.t'.!"'

Change_cost updates the arc prices based on current job assignments

tﬁi*i*'ﬁ‘titiiﬁ**"'*t***‘*'h**if’ﬁtt*itﬁ‘*'QQﬂ*t.ﬁ'ﬁ'i'..'t'..ﬁ"..-Q"Q"../

change_cost ()

{

[rrukxkkkkrnskintd Doclare Global variables RRANASR AR AR R AR N AR AR R AR A bt/

extern int ttime,q,feaslinks[),level,N,M,point(],bnode(]),cost(]:
extern JV jobl[],*job_pointer(];

extern PV pilot[]}:

/**Qtﬁt'itt*ﬁﬁ** Decla:e Local change cost Variables Qi.t.....&t"....'../

int i, j-O,x. K,2;

/* Count the number of the transporattion problem being solved */
ttime +=1;

for (i=1l; i<N; ++i)
{

if (level==8)
printf ("For pilot %d\n",i):;

/* Look at each job assigned to a pilot %/
while (job_pointer(i]->number != 0)
{

if (level==g)
printf ("Job 8sd\n", job_pointer(i]->number);

x = point(i});
k=1;

/* Look at each job that an assigned job intereferes with and change the arc.
Change the arc price on interefering (infeasible) arcs. */
while (job[job_pointer(i)->number).con(k] != 0)
{

#5

z= job[job_pointer([i]->number).con[k] + N;

if (level==§8)
printf("this job int. with node%d\n\n",z):

while (x<=point[i+l)-1 && bnode[x] <= z)

if (bnode{x) == 1z)
cost[(x] = ttime+M;
else if (cost([x] != ttime+M)

{

for(j=1; j<=pilot[i).next; ++j})
if(pilot(i).type[3] == Jjob[z-N].type)
{

cost [x) = pilot[i).costijl;
break:;

)
}

if (level==8)
printf ("bnode[x] %d, z is %d, and cost[x] is %d\n\n",
bnode[x},z,cost[x]):
x += 1;

}
k +=1;

}
job_pointer[i] = job_pointer[i)->next;

}
job_pointer(i) = &pilot(i).assigned[l]);

}
for (i=1l; i<=qg; ++1i)

feaslinks[i) = 0;
/* Determine if any feasible links exist to a particular job */

for (i=1; i<point[N]: ++1i)
{

if (cost{i) < M && bnode([i] != N+q)

feaslinks[bnode[i]=N) = 1;
if (level==8)
{

x = bnode(i] -N;
printf ("Feaslink for 83d exists with link Sd\n\n",x,1i);

}
} ,

if (level == 8)
{

F-26 .

{1

Al

for (i=1; ji<=N; ++i)
for (x=point(i); x<=point[i+l] ~1; ++x)
printf ("%3d%¥4d¥7d\n",i,bnode([x],cost[x]):

/""ﬁ"'i"t.ii. Last ca:d of change coOSst .iﬁﬁ'..'.t"t-'t".tﬁ"".t./

}

F-27

IARARE AR L R ARE SR Body of the Initialize pzog!am KRR TR PERRARNRNSE TR RNRRNEN R/ 1

/'.Q".l..i.'.ti."t'..'."".i.."'i'ii"'.i'.'ti.'.'.'..t'..t.'."'.'

This routine creates an initial solution using the Big M method

""....t..""'..‘""..".".Q.ﬁ.....""".'lﬁ'.'...'-"""".."'./

=
initialize ()
{
/erennassrinnnrrttannr Declare Global Variables ttt.tiﬁi't.tttttt'ttit, - —
extern int level,q,maxl, fmin,tt,M,N;
extern int source[],point(),dual(),pred(]),predl|(]:;
extern int up(},thread(],depth[],cost[],flow[];
ol
/""t"ﬁ."tt't"' Declare Local v.:i.bles 'Qﬁtﬁiﬂt‘tﬁtt"'tttttﬁﬁl
int k,1i;
printf ("Initializing\n");
tt = N + g + 1;
point{tt] = maxl + 1;
point (tt+l] = maxl + N+ g + 1;
/* This is part of the cat mod */
for (k=1; k<=point[tt+l]; ++k)
flow(k] = 0;
/Qt.t'ﬁt'tktQtt"'Q.Qﬁtttiﬁittit'tti"'t.Qltt'tﬂﬁ.'!.tt".'.ﬁt'ttt"'i*t't*ﬁtt
- - A
. ASSIGNING INITIAL VALUES » onind
- - .
itt'it’titattttt'kttf"f.ﬁi'tfﬁi't""t't'ttt"'ititQ*ttﬁ*Qtttttt'*ﬁit'ti.t"/
/* Assign the initial flows (find an initial basis) using the big M
method. Construct the initial tree with this basis. */ "

fmin = M;
depth[tt] = O0; pred[tt] = 0; predl(tt) = 0; dual[tt] = 0; thread(tt) = 1;

for (i=1; i<=N+q:; ++i)

{ ' L

thread[i] = i+1;

pred(i) = tt;

predl{i] = maxl + 1i:

depth(i) = 1;

if (sourcel[i] > 0) at
{

F-28 -

-,

o P

T

-

upli) = 1;
dualli)] = -M-1;
flow(maxl+i] = sourceli):

else

{

duali{i] = M+1;
flow{maxl+i) = -source(i}:
}

cost[maxl+i] = M+1l;
}

if (levelw=4)
{
k =0:

printf ("Pilot %d arcs are:\n\n",tt);
for (i=point(tt]:; i<=point(tt+l]) =-1; ++i)
{

k +=1;
princt

("%»5d%5d%5d%10d\n\n",4i,k, fiow (i), cost{i]);
}

printf ("Node Source Depth Thread Pred Predl Up
for (i=1l; i<=ty;

Dual\n\n"):;
++1)
{
printf ("%3d%6d%7d%7d%64%5d%5d%8d\n",
i,sourceli),depth(i),thread(i),pred[i),predli]),up(i],dual(i]);
}
}

[enwneransansennsrarss Jagt Card of Initialize
}

ﬁ*‘*'ii.Qt.'it't"ttttt"t'tt"/

F-29

4 9l

/"i'ttttt"it'i‘*i'ti' Body Of P’ice P:ogxam 't*..*i."l"."'.ﬂ.ﬁt‘t"".t'/

/-'t"ﬁ'ft"fi'ti.iﬁ.tt"'..".t"t'ﬁ‘i.'*"..tt-"'!tﬁttt't"t't""ﬁtl.ttt'

Frice looks for entering arcs using the row most negative rule

't"'ﬁ*t'ttQt‘ﬁi*‘ifﬁﬁﬁ.**iﬁ'*tﬁ'ﬁ*tt*‘tﬁ"ﬁﬁ*'tt'.t"tttt'!'t.'i".ﬁ‘.""/

price ()

{

Jrewnrnrnnsssonsnnrnr Declare Global Variables t.'li.tﬁ"tti.'ttittﬁti'&tt.tt/

extern int i, point{),dualf]),cost[]},bnode[],linkin,from, to;

extern int N,M,price_count,pivot,pivotcount, level;

Jrnsnrnnnrnsnrnnnntn Declare LOCAL Variables S wtw et e saan e anwaradwdantdtnnnnn/

int cbar:; /* the reduced cost of an arc */

int 1; /* the actual arc number */

/iitﬁt.t.!.i'i'.Q'iﬁ..tﬁt....'......t.t..Q.t....t'ﬁ..'.t....'..ﬁtﬁﬁ"'.'t...

» -
. PRICING *
» *

.'.".Q".'Q'.."..'Q.‘Q..'t‘.."""'."....."'..'.""'.'.".....'.'."./

i += 1;
pivot = 0;
/* Look for the most negative reduced cost on a link out of node i. This

will be the link that we will pivot in. (Row most negative rule).

If we have no negative reduced cost we are optimal. */

for (1 = point(i); 1l<= point{i+l] -1; ++1)
if (cost{l) <M || i == N)
{

price_count += 1;

cbar = duall[i] + cost(l] - dual{bnodell]l]:

F-30

if (cbar < pivot)
{

pivotcount = 1;
pivot = cbar;
linkin = 1;
from = i;

to = bnode(l]:;

}

if (level == 5)
printf("Cbar is %d and linkin is %d\n", cbar, linkin):

[rrennxxninrnninnr Lagt Card of Price tnttti«ﬁnt*ﬁat*tt*ttaﬁﬁttatatﬁ/
}

F-31

[/unsnerpsaddnantnn Body of Pivot out Proqram e ERRRERERNRCERNECRERQCRUEROCETn [

ALRARARE R AR RAR SRS R SRR A0S ARAARRARRARARAlR ARl Rl Rl sl ll Al bl l

Pivct_out finds the leaving arc using a standard ratio test and then updates
the basis by rehanging the tree

AN A P P AN AN R AR N AR AN AR AN AR AR P AR R R N E R A R R RS R R R E R R AR AR R AR N P A PR R A RAN AN SN SRR/

piver_out ()

{

/"'t'it"."ii'."." Decl‘re Global Vl!ilbles ..'."'.'...'QQ......."..'/

exterr. int tt,n,m, from,to, source[),depth|),pred(],up(),flow([]),predli(]:

extern int pivot_count,N,level,fmin,linkin,thread(],dual(],cost(],bnode(]) M:

VAAALAREE RS RSS2 2222 Declare lLocal Variables ARRRARRASR AR AN ARARRARARRRRN/

int A,8,C,2,E,F,last,11,12,2; /* utility variakles */

int nmin; /* the node whose predecessor arc is the arc to leave the basis */

int cut; /* indicates whether cut is on the up or down side */

int jnode; /* the ijoining node of a cycle formed by the entering arxc */

int linkout; /* the leaving arc */

int oldepth,chdepth,chdual; /* respectively the old depth of a node, the change

/iQ-'QQQ"...i..t't..Q"Qt"".‘...'.'Q'..'..'.'."'...'.."'..Q".'...'.'.
L 4 *
* PIVOTING .
L] *
'"’."Q'."..'."'.""""...".""'...t"."'..'""'Q.'.Q'."'.'.'..'/

/* Find the link to leave the basis. The link that will leave will be

either an "up™ link on the down side (side of the from node of the

entering link) of the tree or a "down™ link on the upside (side of

the to node of the entering link) of the tree. The particular choice

of which link to leave is decided by the link which is the closest

tc its lower bound (0). In other words we are doing a ratioc test.

The entering link must enter with flow > or = to 0 thus we must

maintain flow conservation on the links in the cycle formed in

the tree by this entering link. Since we can’t have negative flows

the link that goes to zero first leaves. More than one link could

have its flow go to zero. To resovle ties and avoid the possibility

of cycling an implicit perturbation method is used such that ,in

case of tie, the highest link on the downside or the lowest link

on the upside leaves. This is done by saying flow[predl{m]] must

be < fmin while flow|{predl(n])) must be <= fmin.

pivot_count += 1;

n = from;
mo= tc;

*/

/* First find the deepest node of the from and to node of the enter-

ing link and then check its predlinks for the minimum flow in the

cycle until you get to the same depthL as the higher node.

while (depthim] > depth(n])
{

if (upim) != 1)
if (flow (predl(m]) < fmin)
{

fmin = flow[predlim]);
nmin = m;
cut = 2;
)
m = pred(rm);
}
while (depthi{m) < depth(n])
{
it (up(n] == 1)
if (flow(predl[n)] <= fmin)
{
fmin = flow(predlin)}:
nmin = n;
cut = 1;
}

n = pred(n];

}

/* Once you are at the same depth 8s the higher ncde move up the

*/

tree checking for the =rprorviare Dinimum flow on pred links
until you come to the joining node of the cycle. ./
while (n !'=m)
{

if (upin] == 1)
if (flow([predl[n)) <= fmin)

{
fmin = flow|{predl(n});
nmin = n;
cut = 1;
}
n = predirn);
if (vpi(m] (= 1)
if (flow|predl[m])] < fmin)
{
fmin = flow(predl(m]];
nmin = m;
cus = 2
}
m = pred[m);
}

jnode = m;
linkout = predl[nmin):;

if (level==¢)
printf ("Linkout is %d\n",linkout);

flow[linkin] = fmin:

n = from;

m= to;

/* Once we have decide which link leaves we update the flows on
each link in the cycle mentioned above. By starting alterna-
tively at the from and then the to node of the entering link
we add the fmin flow to down links on the down side and sub-
tract fmin from the up links on the upside. Then do the same
thing for the predl of the pred node of n and m until we come
to the same node (joining node of the cycle). Finally set the
flow of the entering link to fmin (done above actually) */

while (n != 4node)
{

F-34

if (urin) == 1)
flow(predl(n]} -= fmin;
else
‘ flow({predl(n]] += fmin:;
n =pred(n]:

}

while (m != jnode)
{

; if (up(m) == 1)
‘ flow([predl[m]] += fmin:
else
flow({predl[m]] ~-= fmin;
m = predm];

}

/"“."".Ql."'.'.'Q“".."Q'..".""""'..".'.ﬁ".'.‘..".“'.""'..i.
- -
. UPDATING AND REHANGING THE TREE .
» -
P R R NN P AT P TR AR R AN RN T IR AR AP AR R R RN AR E P A AR R RN TR AN S ARSI NS P PO RO SRR R A AN NS RRNNPRTTOCTRNETETY

=

/* 1f the link leaving was on the downside A is the from node of
the entering link and B is the to node else A is the to node
and B is the from node. Then find C, D, E, F, 11, 12 (see var-

iable glossary for definitions) lnd'zehang the tree. */

if (cut == 1)
{

o
[]

from;
to:

m
4

»
]

to:
from;

2
w
L}

}

flag2: C = prediA);
meC;
while (m!= A)

{

last = m;
m = thread(m);

}
s F = last;

11 = linkin;
12 = predi{a};

F-35

e
.~0

- P

.

(2 . . w m m W ae ®

oldepth = depth|[A):
chdepth = depth[B] + 1 ~ oldepth;

/* Update the up variable of A */

if (cut ==l)
if (up[A) == 0)
up[A] = 1;

if (cut ==2)

if (uplA} == 1)
uplA] = 0;

/* Determine the change in the dual prices

if (up[A) == 1)

chdual = dual(B] -~ cost([l1l]) - duallA):
else

chdual = dual[B] + cost([ll] - dual(A}:

m = 2;

flag: last = m;

*/

/* Update the dual and depth of A and its descendants +/

dualm]) += chdual;
derth[m) += chdepth;

m = thread[m):

if (depth[m] > oldepth)
goto flag:

/* Update the thread */

D = last;

E = thread|D):
thread|(F)] = E;
thread(D) = thread([B):;
thread(B) = A;

/* Update the pred and predl of A */

pred(A] = B;
predl(A] = 11;

/* If the predl of A is the link that’s leaving we’re done

rehanging the tree. If not treat the predl of A like the &t

link thats entering and repeat the process */

if (12 != linkout)
{

F-36 :

linkin = 12;

B = A;

A =C;

if (B == bnodellinkin)})
cut = 1;

else
cut = 2;

gcto flag2;

}

fmin = M;

if (level==6)

{
printf ("Node Source Depth Thread Pred Predl Up Dual\n\n");
for (z=1; z<=~t%; ++2)

{

printf ("$33°5€d8°97d%7d%6d%54%54%84\rn",
z,source(z],depth(z],thread{z],pred|(z],predl(z],up(z},dual(z));:

AR RAA LA A S SRS 2 Last Card of PiVQt out ittﬁtt'ﬁttttﬁ'ttﬁt*t‘t"ii'i"‘ti/

#include "macro.h"

Jerranrenanwssr Body Of CONVErt Program *#ewsdwdsrssaksannsbvarann/

/tt'¢ti"t*'tfittttﬁﬁttiittttttt.t'tittt*ttti'tttit.ttttttttt'ﬁtiii

Convert ccnverts the double precision representation of job times
and lengths into an integer display

.'tiitttt'iitttt*ttﬂ*i*iiit"*tittﬂtttﬁt'itﬁ*i*t.tt*it.ttﬁi*tt*ittﬁ/

convert (nn,ii)

/".Q.i.*'."' Declare Global variables "ﬁ"ﬁ'iﬁ‘t**t*ﬁﬁﬁ"t**it/

A-.ble nn; /* the actual job start time or length */
int ii; /* desired return parameter (month,day,hour,minute) */

{

r J/eerrasrmarasasesr Daclare Local Variables **tttﬁit*ttt*tiiﬁttt'**i*&tvtﬁ/

int di,d2,d3,d4,datel4]);
double £4;
/* convert the month */
dl = nn * 100000;
date{l)] = d1/100C00;
/* convert the hour */
d2 = dl % 100000;
' date{2] = d2/1000;
/* convert the minutes */
d3 = d2 % 1000;
dzte 3! = (d3*144)/60;
d4 = date{3] % 100;
£4 = (d4+*1000);
£f4 = £4/100000.0;
f4 = £4+60;
date[3] = gdate([3]) -~ d4 + £4/1;

zeturn (date{ii}):

/t..'t..iﬁ.‘.tt't Last c.:d of Convert i’."t'."'t""""t"""tt"/

}

F-38

#include "macro.h"

/*ittt***t*tti*'ﬁt Body of Assign pxogram tt*ititt*itt*itt**t*t*tttttttitti/
/i****iiﬁil**i‘ﬁ*iiﬁﬁ*Qtiti*ttﬁ‘*ﬁﬁ*iﬁi**iﬁ&**t**tt**Q**t**ﬁﬁiﬁt****i“i‘*

hssign actually assigns job vectors to a pilot based on the simplex solution

'*'titt*'l'A'l'iii'**t*ﬁ'f’t*iitti.'iﬁtﬁittii**'i.****iiﬁ*i**‘.’*'Qt't".k"t.'i‘/

assign ()

JErRmanrxnnrrrnnannttrr Daclare Global Variables **waAn sk s axs ARt Andr ko kRt wn /

extern JV job(],*job_pointer(]:

extern PV pilot|[]):

extern int bflow[],bogus_label{],gold[],level, jobleft,q;
extern int imp,bnode(],N,point(},flow|[],cost(]:

Jrrrnsannnanrrsnsias Declare LOCALl Variables ##asutasdnwandsdnnwaraneann/

int pp,trip=0,date(4]),i,3=0,k,x,2; /* utility variables */

int nflow=0; /* tracks bogus assigned arc flows */

double stop:; /* stop time of a job */

jobleft = 0;

if (level == 7)
{

printf ("\n\n"):
printf ("Nonzero flow for each link is:\n\n");

}

for (i=1; 4 <= N; ++i)
{

if (4 !=N)
z = gold(i};

else
z = 0;

for (k=point[i); k<=point [i+1]-1; ++k)

bflow(k] = 0:

/* assign the job (bnode) the pilot (anode) */
if (flow[k) > 0 && imp != 1)
{

x = bnode (k) - N;
3 o+= 1;

if (level==7)
printf ("%6d.%2d%3d",i,x,flow(k]);

while (flow(k] != 0)

z += 1;
pilot(i].assigned[z] = job[x]:

pilot (i) .assigned[z].number = x;
pilot{i).assigned([z).next = gpilot(i).assigned[z+1]:

gold[i] = z;
}
flow({k] -= 1;

if (i==N)
nflow += 1;

/* keep track of bogus assigned jobs with nflow */
if (i==N €& x != q && bogus_label[piloi (i) .assigned(z].number)

{

flowl{k]) = nflow;
jobleft = 1;

}

nflow = 0;

if (3> 4)
{

if (level==7)
printf ("\n\n"):

j =0;
}

/* formatting for printing the schedule */
if(level==7)
{

printf (“\n\n"):
printf ("Pilot# Job# Start Stop\n\n");

}

for (i=1; i <= N; ++i)
{

while (job_pointer[i)->number != 0)
{

(1

for (pp=point(i):; pp<=point(i+l)-1:; ++pp)
{
if (bnode(pp)-N == jJob pointer(i]->number)
bflow(pp] = 1;
)
job_pointer(i}= job_pointer([i)->next:;
}
job_pointer[i] = &pilot([i].assigned[l]: :
}
——
if (level==7) -5
for (i=1l; i <= N; ++41i)
{
while (job_pointer[i)->number != 0)
{

printf ("%3d%10d",i, job_pointer[i]->nunmber);

for (ke=1; k<=3; ++k)
datelk)=convert (job_pointer([i]->start,k);

flug: if(date[3] <100)
printf (" 00%2d",date(3]));

else if (date(3) < 1000 && date[3]>= 100)
printf (" 083d",date([3)):

else ‘f
printf (" S4d",date[3)):),

K if (trdp 1= 1)
{

F-41

stop = job_pointer[i)->length + job_pointer[i]->start:

for (k=1; k<=3; ++k)
datel{k]l=convert (stop,k);

trip = 1;

goto flug:

else
{
trip = 0; .
printf ("\n"):
}
job_pointer (i) = job_pointer[i]->next:
}
job_pointer[i] = &pilotli).assigned[1};

}

/'tti'iiitﬁttttttt' Last Cazrd of A’,iqn tﬁiQiiﬁit"tﬁ‘.".ﬁ*‘*"*"'Q'/

}

F-42 :

#include "macro.h"

[*o*srannrsnsss Body Of Zero_pilotvector Program #*wessswwswsadxswwus/

/"t'..ttifi*ﬁﬁi'iif'i.tt.'fi".iﬁ...‘.ﬁﬁﬁitﬁ.tﬁtﬁitttﬁ‘ﬁ*.ﬁ‘.i.titﬁtﬁ

This routine zeroc outs all assigned jobs to bogus in preparation for
the nex+ transportation problem.

'tattitt*i.i'tiit"'ttit*'t*tt*tttttttﬁ*itittt‘t'tttittt'tttt'ttttttt/
zero_pilotvector (y)
int vy
{
ALRAEL AL AL AL LSS S Declare Global Variables Qttttit*wa«ttttttttﬁttttt*/
extern int N;
extern PV piloti{):
extern JV *3job_pointer(]:

| i extern int gold(],bogus_labell[}:

/* zero out the bogus assigned jobs */
"?11° (pilot([y).assigned{l] .number != 0)
if (pilotiy).assigned(l).label == 1)
bogus_label[pilot[y].assigned(1l]).number] = 1;
delete(y,pilotly).assigned(l]);
}
job_pointer(y] = épilot|y].assigned(1]);

/rrwsavanatnn Lagt Card of Ze:o_pilotvector Qtttittttittt.tﬁt’tt.it't.i/

F-43

#include "macro.h"

/.QQ.Q".Q."“"'Q.‘.‘ Body ot Add Prog:am ﬁtttltt't't.*""*.'it*‘tﬁ"'/
/Q'ﬁttiIi*iiiii*i"itti.'ii'i"'i“ﬁiﬁﬁt"‘ﬁttti.*tﬁitﬁﬁfﬁ.iﬁ'ii"*iﬁﬁtﬁ'

Add is a routine to add a job vector to a pilot’s assigned list

It"i‘.t'ii'*.t"t'ﬁiti..it.i.ﬁ'ﬁi"ﬁ.tﬁ'.ﬁ'i'li'I.t"ﬁ....ﬁi'.""'ﬁ'ﬁ‘./

add (pil,vec)

/ii'iiiittttitﬁi.t*ﬁi Decl.re Global Va:iables 'ii'.ti'.ttﬁiiiﬁt.."ﬁl'tt/
int pil; /* the pilot to add the job to */
JV vec: /* the job vector to add */

{

[rrrrhrnnsxnnsnnrnnaantrr DNaclare Local Variables tnttﬁtttt.tnttttttittttt/

int k,i;

extern PV pilot|[];

extern int goldl]:

i = pil; k=1;

/* £ind last assigned job and add new job after it */
uhile (pilot(i].assigned[k]).number != 0)

k += 1;
pilot[i].assigned[k]).next= gpilot[i).assigned{k+1]:

}
pilot(i].assigned{k] = vec:

pilot (i) .assigned([k].next= &pilot(i].assigned(k+l];
gold{i] = k;

[resaansssnesaanantsdnn Lagt CAYA Of AQd AN A0 a AN asd Nt aNddadshones/

)

#include "macro.n"

/.ﬁ...'...'."‘i'.-.'ﬁ' Body of Delete p:ogxam '..".".Qﬁ'i'.i.'-.'.i"i*".'./
/QQ'".Q.tt't'i".'t"ttt.'i'iﬁ""..tt.ttttttt‘..itt‘t'tt'ttittittiit*itt'ttt

Delete removes an assigned job from a pilot’s list of jobs

Ql"tttt'.'tttttiitit.QQ"'Q'.*""...'.'.*'tti"ttt.tﬁit*itﬁ'ttttt..*tl'ttttt,

delete (jock, jvec)

/.i'tﬁit"i'.'tt'itiit Declare Global Variables .tt'ititttttQ‘t.t'tt'ﬁ.‘.'tt./

int jock: /* the pilot to remove the job from */
JV jvec:; /* the jobvector to remove from the above pilot */

{

[Exaransnsnanrssnsits Daclare LOCal Variables * Attt eanannasanahdtsrdrannohdn/

int i, k,out;
extern int gold(),M;
i = jock; k=1; out = M;
/* find the given job and delete it */
for (k=1; k<=gold[i]; ++k)
{

if (pilot([i).assigned([k].number == jvec.number)
out = k;

if (k >= out)
{

pilot[i).assigned(k] = pilotii].assigned{k+1);
pPilot([i).assigned[k].next = &pilot([i).assigned[k+1]:

}
gold[i] -=1;

[errerensntasannntiantentnt Lagt CAXd Of AELOLE **RTANARRERNAANARRRRRANSGRRANSS/

)

F-45

#inclucde "macre.h"

/.i.'it."""i""t Body of suap P:ogra‘n ".ﬁﬁﬁt.'t'.ﬁi"'.....i.t.t.t'/

/.ﬁttt"ﬁﬂﬁﬁttit"'tttt"tt.ﬁt"ttti.ttttiIﬁ.'Qttt.t"ﬁt.....ittit't.t.

Swap takes as an input a "bogus" assigned job and attempts to swap

it to a "real"™ pilot. If unable to do so the job is labeled to "bogus®”
so tha:t the algorithm may continue. For details of the algorithm see
section 2.2.3

"iiﬁ*"i.'i"ﬁ*'ﬁ'tﬂ**It""".'i“"'.ﬁ"tﬁﬂ*it.tt.tﬁﬁiﬁ't.."*.‘ﬁ*t&ﬁ‘/

swap {p)

/* The entering parameter p is the pilot to swap jobs from (bogus) */

int ps

JERRRRARNRA AR AR Declare Global Variables t*tt*tttttttikttttittttiwtt/

extern int swap_count,nogo,flow(),point([],gold[]},level;
extern int bnodel),q.N,M, feaslinks(]):
extern JV job{),*job_pointer|[]:

extern PV pilot(]):

/.ttttt".ttﬁitt"t" Declare Loc.l Variables QQ'Q'Q'tt"t&.'.'.t'.t’tl'.t'i/

int repeaticb; /* tracks whether this job ha been swapped out before */

int skip; /* indicates to skip a pilot already swap(ped a job on this

int track: /* indicates that an eligible swap pilot has been found */

int noswap; /* general marker indicating no swap to a pilot */

int y,i,f,k,0ld=M,a,x,d,c,tirst,pi,83; /* utility */

int bestswap[NJ}; /* indicates the best swap candidate to a particular

job */

int oldcost: /* tracker for best cost */
/* local struct */

SV olds;

nogo = 1;

/* lock at all bogus assigned jobs and swap them out */

while (job_pcinter(p]->number != 0)
{

sj= job_pointer[p]->number;
oldcost = 0; old = M; track =0; noswap = 0:

/* If the jok is not the sink job and the job is not labeled swap it out */
if (8j != q && job_pointer(p)->label != 1)
{

if (level==1()
printf ("We are swapping out job %d from pilot %d\n",
job_pointer[p)->number,p):

bestswap(sj] = p:

for (i=1; i<N; ++i)
{

if ((noswap > 0 && track == 1) ||
(track==0 && noswapw==0)

{
skip = 0;

if (skip == 0)
{

/* f£ind the pilots qualified to do the bogus assigned job */
£ =1; k =1;
while (pilot[i).typelk) <= job{sj].type
6& pilot(i).type(k) = 0)

{
if (pilot([i).type(k] == job[sj].type)
{
noswap = 0;
if (level == 10)
printf ("Pilot %d is qualified to do bogus job %d\n\n",
i,83):
track =1;
/* of these pilots see which of their assigned jobs interfere with the
bogus assigned job */

while (job_pointer(i]->number (= 0)
it (job_pointer(i]->number != q)
{

P] = job_pointer(i)->number;
y =1;

while (jobisjl.conly) <= pj && job(sj].con{y) != 0)
{
¢ 17 { p3 == job[s3l.conlyl)

if (level == 10)
printf ("Pilot %d’s job td interferes with the swap\n\: §

/* as long as the intefering job(s) are not labeled to a pilot (in which case

F-47 | ol

they cannot be swsapped) see if a feasible link (sn available pilot) exists
for the interfering job */

it (job_pointer{i)->label != 1)
{

if (feaslinks[pj] != 1)
{

noswap +=1;
if (level ==10)
{

printf ("In addition there is no one to take thi:
printf (“His cum noswap is &d\n",noswap):

else
{

noswap = M;
if (level ==10)
printf (“"We can’t swap with pilot %d since his job &«

}
pilot[i).swapout(£f) = pj;
pilot (i) .swapout [£+1) = 0;
if (level==l0)
printf(“1f pilot 8d does bogus job $d he’ll have to drc
€ 4= 3;
}
y +=1;
}
job_pointer (i) = job_pointer[i)->next:
)
/* Swap out pilots with the least number of interfering jobs. In case of ties

select the pilot that has the best price for the bogus assigned job */
if (noswap <= 0ld && noswap<M)
{

it (pilot(i].cost{k]) < oldcost)
{

oldcost = pilot{i).costik):

old = noswap:

bestswap[sj] = i;

if (level==10)

printf(“"The best pilot so far to swap job %d with is pilc

if (track == 1)
noswap = old;
else
noswap = 0;

if (level ==10)
printf("Can‘t swap pilct %d jobs with pilot &d\n\n",i,p:.

}

k += 1;
}
job_pointer[i) = &pilot[i).assigned([l);
}

}
d = bestswap[sj];

/* if no one available to do the bogus assigned job label it to bogus */
if (de==p)
{

if (levele=10)

printf ("We are labeling 3jcb %4 to pilot %d\n\n"“,sj,
d): .

job_pointer(p)->label = 1;

}
/* otherwise label the job to the best candidate found */
if (d !t=p)
{

if (level==10)
printf ("We are swapping out with pilot Sd\n\n",d):;

swap_count += 1;
repeatjob=0; a = 1;
while (pilot{p].assigned(a).number != 0)
{
if (pilot[p].assigned|a].number == sj &¢& repeatjob != 1)
{ .
pilot(pl.assigned{a).label = 1;
olds = pilot{pl.assignedia]:
delete(p,0lds);

add(d,olds):;
repeat job = 1;

a+= 1;

F-49

}

nogo = 0;
c=1; first = 0;

/* assign all of the intefering jobs to bogus */
while (pilot[d].swapoutc] != 0)
{ .

if (level==1()

printf ("We are swapping out pilot %d job %d\n\n",d,pilot[d].swapout|c]}):
£ = 1;
while (pilot{d).assigned(f]).number != 0)

{

if (pilot[d).assigned[f).number == pilot(d].swapout[c])
{

olds = pilot([d].assigned(f];
delete(d, o0lds);
add (p,olds);
for (i= point[p]: i<point(p+l]);: ++i)
if (bnode [i]==N+0lds.number)
{
flow(i] += 1;
break:;
}

f += 1,
cC += 1;

}

job_pointer(p)j= job_pointer(p]l->next;
}
job_pointer[p] = &pilot[p].assigned(1];

/* adjust the flow to reflect the bogus assigned jobs */
for (x=point[p); x<=point[p+1l]-1l; ++x)

flow([x) = 0;
while (job_pointer(p}->numbexr != 0)

{

flow[job_pointer [p)->number + point[p] ~1] += 1;

job_pointer(p) = job_pointer[p)->next:

}

job_pcinter([p} = &pilot(pl.assigned(l]):
if (level == 10)

{

for (i=1l; i <=N; ++i)
{

F-50

printf ("\n\n");
printf ("Pilot %d’'s jobs are now:\n\n",i):;
while (job_pointer[i)~>number != 0)

{

printf ("%3d", job_pointer{i]->number);
job_pointer([i] = job_pointer([i]->next;

}

job_pointer[i]} = &pilot[i).assigned[1]:

/ltt'.Q*‘.t'!"'tiﬁ"iﬁﬁﬂtﬁ last ca!d of swap Q"f.'ﬁ*'ﬁt.t"i"‘ﬁ*'t"ﬁ"/

}

F-51

#include "“macrc.h”
/*wessssasssnsusnnnnwraws Body Of Reheap Program SRARNR AR ARSI RGN R R R RN AW/

/""""..t.Q.'tt'...."'."".Q"t'ﬁﬁ"'tt't*.'t*'*tittﬁttttt.‘t.‘ﬁﬁﬁt'ﬁt

Reheap updates the "heap" vector following the reassignment of a job in
the improve phase.

t.i.’"Q!iﬁtt!.'""t"".Q'ﬁ'."..ﬁt'*'."t'*ﬁ"tﬁ'.‘ttt.i'ﬁﬁt't""'...i.i/

reheap(jo,pi)

[erensensnwnraknwwrnnr Doclare Global Variables ERAN AR RAARARN AR R R AR AR AR/
int jo: /* the job number to reheap */

int pi; /* the pilot who now has the job */

{

[rewasasnnnsrnsarenrir Neoclare Global Variables ttttttttt'ttit.tttttittict/

extern PV opilictily

extern JV job{]):

extern HP heap(), *hp;

extern int point{),bnode[],cost(],N;

/t"ﬁt’tt.tt'i"i'.ﬁ’i Declare Local Variables 'tﬁtttttﬁtiitttﬁ*itt*ttttt/
int jjld,k;
/* initialize */
33 = Jo:
d = pi;
heap(jj].pilot = d;

/* assign new arc to the heap struct */
fcr (k=point[d]; k<=point [d+l]=1l; ++k)
if (bnode[k]-N == 3$4)
{

heap(jj).axc = k;
break:;

}
/* assign new cost to the heap Sstruct */
for (k=1; k<=pilot[d)].next; ++k)
if (pilot(d).type(k]==jobl[}]].type)
{

heap{jj) .cost = pilot[d].cost(k]):
break;

}

/reransssnannssnknesnnen Tagt card of Reheap RRARERNRAANNEARRARNER RN RN RRN S

#include “macro.h"

[revnanaxnnkkhnrkdnchwanssn Body Of IMPI PIrOQram ***ataseasswsnaswhhnsansas/

/'ttii**ﬁttii*ti**ﬁﬁit*it'tiﬁt‘.ii..*t'ﬁttttttﬁit*it.t*tttt'.t"tt*.tiiﬁt"'

Impr is the routine to improve the best (hopefully feasible) solution found
as of yet by the simplex and swap routines. The modified two opt procedure —
used is described in section 2.5 . -

Qttttitttitat*t*t*t**ttiﬁttt‘i**ti*tttt#.tt*titt'ti'ttttitt't'ttttt*tttt*tti/
impx (33.pP.cs)

RN ER R R AR AR AR AR A AN DR AR AR Declare Global Variables WERRAARAARRARNARE AR ANy f
int 33; /* the job we seek to improve the price of */

int pp; /* the pilot currently assigned the job */

int cs; /* the current price gained for a job */

{

[rErsnnasansnnsrrnnnkineasnw Declare Global Variables *w#ttaseasnsnssnntnstans/ b
extern int imp_ count,q,level,N,imp;

extern PV pilot(]:
extern JV job{],*job_pointer([]:

JRrkRnadkannanninakasraisss Daclare Local Variables saranssasandnttondthnsn/
int pj, i, j,k,n,m; /* utility variables */
int chcost: /* the change in cost with a given swap */

int bestcost: /* the bestcost found for a given swap */

int noswap:; /* indicates that noswap is possible */ -

int jobswap([ND],swjb[NDj; /* both indicate the jobs that must swap to =
complete an improve swap */

int bestswap[kJ]: /* indicates the best pilot to swap for */

int pilot_check:; /* marker indicating a pilot has been checked for a swap */

int cumswap; /* the cumulative swap number for a given improvement */ Qﬁ’

/* struct */
JV jve;
/* initialize parameters */
for (i =0; i<ND; ++1)
{

jobswap(i]) = 0:
swib(i) = 0;

F-52

}
crhecost = Q)
bestcost = 0;
bestswap(ji) = pp:

/™ find each pilot qualified to do a given job */
for (i=1; i<N: ++i)
{

cumswap = 0;
noswap = 0;
pilot_check = 0;

for (j=1:; j<=pilot[i].next; ++3j)
if (pilot[i).type([j] == job[3j3]).type)
{

pilot_check = 1;
if (level == 10) .
printf ("Pilot %d is qualified to do job sd\m\n", i, if:

/> fcr each pilot qualified to do a given job see which of his assigned jobs
*/

interfere with it
while (job_pointer([i]->nunier != G)
if (job_pointexr(i)->number = q)
{

k =1;

PJ = job_pointer{i}->number;

while (job[Jjj).con{k] <= pj && job[j3j).con(k) != 0)
{

1:((jobiij).conlkx] == pj)

cumswap += 1;

jobswap [cumswap] = pj;

if (level == 10)

printf (" Pilot %d‘s job %d interferes with job Ad\n\n"

1, pPI, 3N

k += 1;
}
Job_pointer([i] = job_pointer([i)->next;
}
Job_pointer([i] = &pilot[i).assigned[1];

/* see if the pilot who is dropping the improve job can pich up all of these
*/

interfering jobs
while (job_pointer(pp)->number != 0)
if (job_pointer([pp)->number != q)
{

PJ = job_pointer([pp]l->number;
1f‘(PI = 33)

F-53 .

o e e—— © —

n=1; i
while (Jjobswap!n] != C)
{

k =1;

m = jobswap[n):

while (joblpjl.con(k] <= m && jobipj)l.coni{k] != 0)
{

if (job{pj).con(k) == m) R
{ .
if (level == 10)
printf("TOO BAD, pilot %d can’t do pilot %d’'s 3job %d, ther:
noswap = 1;
}
kK += 1; —
}
n += 1;
}
} ‘il
el e
jor_pointer[ppl] = job_pointer[pprl->next:
}
job_pointer{pp} = &pilotipp).assigned{l):
/* if he can, see if this will improve the objective, if so keep track of it */
if (noswap != 1)
{
chcost = 0;
ne=1;
while (jobswap(n) != 0)
{

m = jobswap([n):
for (k=l; k<=pilot[i].next; ++k)
if (pilot(i]).type([k] == Job(m].type)
{

chcost -= pilot(i].cost([k]:
break:

}
for (k=1; k<=pilot|[pp].next; ++k)
if (pilot(pp].typelk] == Job[m].type)
{

chcost += pilot([pp].cost[k]):
break;
)]

n 4= 1;

}

chcost += (pilot(i).cost[j)-cs):

F-54

if (level == 10)
pPrintf (“The chcost if pilot Md picks up job 8%d is td\n\n",
i,3j.checost):

if (chcost < bestcost)
{

chcost = bestcost:
bestswap(jj] = i:

n =1;
while (jobswapin] != 0)
{

. swib(n] = jobswapin);
T n += 1;
}
while (swib[n] != 0)
{

swib[n) = 0;
n+=1;

if (pilot_check == 1}
j = pilot([i).next;

n=l1;
while { jobswap(n] != 0)
{

jobswap(n) = 0;
n 4= 1;

}
}

/* swap out with the best changecost */

g if (bestswap(jj) != pp)
{

imp_count += 1;

i = bestswap(3j):
if (level == 10)
printf ("We’re swapping out with pilot 8d\n\n", 1):

n=1;
while (swib(n] != 0)

{

ms= 1;
while (pilot[i).assigned{m].number != swib(n) &t m < NJ)

F-55 b

m+= 1;

jvec = pilot{i).assigned[m];
delete (i, jvc):

add(pp, jvc):
reheap(swibin],pp):

n 4= 1;

}
me=1;
while (pilot[pp].assigned(m].number != jj && m < NJ)
m += 1;
jve = pilot(ppl.assigned(m];
add (i, jve);
reheap(jj,1i):
delete (pp, jvc):
imp = 1:
}
else
{
if (level == 10)
printf ("No good swaps for job %d\n\n", J)):

}

VAAALAL AL A AL LA LAl S Nd Y 1] card of IW! ARRE T AN NA SRR AR E AR IARAAR R AR R AR NR]

}

